
  

 
 

 
 

 
 

 
 

IT DEPARTMENT 

SEMESTER VI 
 
 

DISTRIBUTED SYSTEMS 
 
 

LABORATORY MANUAL 

 
 
 

AS PER REVISED SYLLABUS 
UNIVERSITY OF MUMBAI 

 

 

 

 



 
 

  ARMIET/IT/ DEGREE/ VI  SEM / DS/  OF 
 

LABORATORY MANUAL CONTENTS 

 

This  manual  is  intended  for  the  Third  year  students  of  Information 

Technology in the subject of Distributed Systems . This manual typically 

contains practical/Lab Sessions related Middleware covering various aspects 

related the subject to enhanced understanding.  

Although, as per the syllabus, It covers all the aspects of d.s. It introduce its 

readers to basic concepts of middleware, states of art middleware technology and 

middleware services like RMI,CORBA,DCOM and EJB.  

Students are advised to thoroughly go through this manual rather than only 

topics mentioned in the syllabus as practical  aspects  are  the  key to  

understanding  and conceptual visualization of theoretical aspects covered in the 

books.  

Best of  Luck for your Laboratory Sessions  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Mr.Likhesh Kolhe     Mr.Mayank Mangal 

 HOD IT Department   Asst. Prof  IT  Department 
 
 
 
 
 



 
 

  ARMIET/IT/ DEGREE/ VI  SEM / DS/  OF 
 

Do’s  and Don’ts  in Laboratory:  

 

1. Make entry in the Log Book as soon as you enter the Laboratory.  

2. All the students should sit according to their roll numbers starting from their 

left to right.  

3. All the students are supposed to enter the terminal number in the log book.  

4. Do not change the terminal on which you are working.  

5. All the students are expected to get at least the algorithm of the 

program/concept to be implemented.  

6. Strictly observe the instructions given by the teacher/Lab Instructor.  

 

Instruction for STUDENTS 

1.   Submission related to whatever lab work has been completed should be done 

during the next lab session. The immediate arrangements for printouts related to 

submission on the day of practical assignments.  

2. Students should be taught for taking the printouts under the observation 

of lab teacher.  

3. The promptness of submission should be encouraged by way of marking 

and evaluation patterns that will benefit the sincere students.  

 

 

 

 

 

 

 

 

 

 



 
 

  ARMIET/IT/ DEGREE/ VI  SEM / DS/  OF 
 

 

 

DS LABORATORY 

ACADEMIC YEAR 2014-2015 

DEPARTMENT OF INFORMATION TECHNOLOGY 

SUB: DISTRIBUTED SYSTEMS 

 

Class: Third Year        Sem: VI 

 

INDEX 

 

Sr.No. Practical Page No. 

1 To study Client Server based program using RPC  

2 To study Client Server based program using RMI  

3 To Study Implementation of Clock Synchronization 

(logical/physical) 
 

4 To Study Implementation of Election algorithm.  

5 To study Implementation of Mutual Exclusion algorithms  

6 To write Program multi-threaded client/server processes.  

7 To write Program to demonstrate process/code migration.  

8  Write a distributed application using EJB  

9 Write a program using CORBA to demonstrate object brokering.  

10 

 

Use .Net framework to deploy a distributed application.  

 

 

 

 

 

 

 

PREPARED BY        APPROVED BY 

 



 
 

  ARMIET/IT/ DEGREE/ VI  SEM / DS/  OF 
 

EXPERIMENT NO:1          DOP:                  DOS:            GRADE: 

TITLE OF EXPERIMENT: CLIENT-SERVER WITH RPC  

AIM: TO STUDY CLIENT-SERVER BASED PROGRAM 

 

 
AIM:  To study Client Server based program using RPC. 
 
THEORY: 
RPC is a powerful technique for constructing distributed, client-server based applications. It is 
based on extending the notion of conventional, or local procedure calling, so that the called 
procedure need not exist in the same address space as the calling procedure. The two processes 
may be on the same system, or they may be on different systems with a network connecting them. 
By using RPC, programmers of distributed applications avoid the details of the interface with the 
network. The transport independence of RPC isolates the application from the physical and logical 
elements of the data communications mechanism and allows the application to use a variety of 
transports.  
RPC makes the client/server model of computing more powerful and easier to program. When 
combined with the ONC RPCGEN protocol compiler  clients transparently make remote calls 
through a local procedure interface.  
 
An RPC is analogous to a function call. Like a function call, when an RPC is made, the calling 
arguments are passed to the remote procedure and the caller waits for a response to be returned 
from the remote procedure. Figure shows the flow of activity that takes place during an RPC call 
between two networked systems. The client makes a procedure call that sends a request to the 
server and waits. The thread is blocked from processing until either a reply is received, or it times 
out. When the request arrives, the server calls a dispatch routine that performs the requested 
service, and sends the reply to the client. After the RPC call is completed, the client program 
continues. RPC specifically supports network applications.  
 
Program Code: 
 
#include <stdio.h>  
#include <rpc.h>  
#include <pmapclnt.h>  
#include <msg.h>  
   
static void   messageprog_1();  
static char   *printmessage_1();  
   
static struct timeval TIMEOUT = { 25, 0 };  
   
main()  
{  
    SVCXPRT *transp;  
  
    (void)pmap_unset(MESSAGEPROG, MESSAGEVERS);  
  
    transp = svcudp_create(RPC_ANYSOCK);  
    if (transp == (SVCXPRT *)NULL)  
    {  



 
 

  ARMIET/IT/ DEGREE/ VI  SEM / DS/  OF 
 

        (void)fprintf(stderr, "CANNOT CREATE UDP SERVICE.\n");  
        exit(16);  
    }  
    if (!svc_register(transp, MESSAGEPROG, MESSAGEVERS, messageprog_1, IPPROTO_UDP))  
    {  
        (void)fprintf(stderr,  
        "UNABLE TO REGISTER (MESSAGEPROG, MESSAGEVERS, UDP).\n");  
        exit(16);  
    }  
  
    transp = svctcp_create(RPC_ANYSOCK, 0, 0);  
    if (transp == (SVCXPRT *)NULL)  
    {  
        (void)fprintf(stderr, "CANNOT CREATE TCP SERVICE.\n");  
        exit(16);  
    }  
    if (!svc_register(transp, MESSAGEPROG, MESSAGEVERS, messageprog_1, IPPROTO_TCP))  
    {  
        (void)fprintf(stderr,  
        "UNABLE TO REGISTER (MESSAGEPROG, MESSAGEVERS, TCP).\n");  
        exit(16);  
    }  
    svc_run();  
    (void)fprintf(stderr, "SVC_RUN RETURNED\n");  
    exit(16);  
    return(0);  
}  
  
static void messageprog_1(rqstp, transp)  
struct svc_req   *rqstp;  
SVCXPRT  *transp;  
{  
    union  
    {  
        char  *printmessage_1_arg;  
    } 

    argument;  
    char      *result;  
    bool_t  (*xdr_argument)();  
    bool_t  (*xdr_result)();  
    char   *(*local)();  
  
    switch (rqstp->rq_proc)  
    {  
        case NULLPROC:  
            (void)svc_sendreply(transp, xdr_void, (char *)NULL);  
            return;  
  
        case PRINTMESSAGE:  
            xdr_argument = xdr_wrapstring;  
            xdr_result = xdr_int;  
            local = (char *(*)()) printmessage_1;  
            break;  



 
 

  ARMIET/IT/ DEGREE/ VI  SEM / DS/  OF 
 

  
        default:  
            svcerr_noproc(transp);  
            return;  
    }  
    bzero((char *)&argument, sizeof(argument));  
    if (!svc_getargs(transp, xdr_argument, &argument))  
    {  
        svcerr_decode(transp);  
        return;  
    }  
    result = (*local)(&argument, rqstp);  
    if (result != (char *)NULL &&  
        !svc_sendreply(transp, xdr_result, result))  
    {  
        svcerr_systemerr(transp);  
    }  
    if (!svc_freeargs(transp, xdr_argument, &argument))  
    {  
        (void)fprintf(stderr, "UNABLE TO FREE ARGUMENTS\n");  
        exit(16);  
    }  
    return;  
}  
  
char  *printmessage_1(msg)  
char  **msg;  
{  
    static char  result;  
  
    fprintf(stderr, "%s\n", *msg);  
    result = 1;  
    return(&result);  
}  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Conclusion : Hence we have studied and run Client-Server based RPC program  successfully. 
 

 

 



 
 

  ARMIET/IT/ DEGREE/ VI  SEM / DS/  OF 
 

EXPERIMENT NO:2          DOP:                  DOS:            GRADE: 

TITLE OF EXPERIMENT: CLIENT-SERVER WITH RMI 

AIM: TO STUDY CLIENT-SERVER BASED PROGRAM 

 

 
AIM: To study Client Server based program using RMI. 
THEORY: 
The RMI application comprises of the two separate programs, a server and a client. A typical 
server program creates some remote objects, makes references to these objects accessible, and 
waits for clients to invoke methods on these objects. The RMI application provides the mechanism 
by which the server and the client communicate and pass information back and forth. The RMI 
distributed application uses the RMI Registry to obtain a reference to a remote object. The server 
calls the registry to associate a name with a remote object. The client looks up the remote object 
by its name in the server?s registry and then invokes a method on it.  
 
Program: 
ReceiveMessageInterface.java  

import java.rmi.*; 
 
public interface ReceiveMessageInterface extends Remote{ 
  void receiveMessage(String x) throws RemoteException; 
} 
The above code defines the RMI interface. The  receiveMessage() method is implemented in the 
server class.  

  

Here is the code of RMI Server: 

import java.rmi.*; 
import java.rmi.registry.*; 
import java.rmi.server.*; 
import java.net.*; 
 
public class RmiServer extends  
  java.rmi.server.UnicastRemoteObject implements ReceiveMessageInterface{ 
  String address; 
  Registry registry;  
 
  public void receiveMessage(String x) throws RemoteException{ 
  System.out.println(x); 
  } 
   
  public RmiServer() throws RemoteException{ 
  try{   
  address = (InetAddress.getLocalHost()).toString(); 
  } 
  catch(Exception e){ 
  System.out.println("can't get inet address."); 
  } 
  int port=3232;  



 
 

  ARMIET/IT/ DEGREE/ VI  SEM / DS/  OF 
 

  System.out.println("this address=" + address +  ",port=" + port); 
  try{ 
  registry = LocateRegistry.createRegistry(port); 
  registry.rebind("rmiServer", this); 
  } 
  catch(RemoteException e){ 
  System.out.println("remote exception"+ e); 
  } 
  } 
  static public void main(String args[]){ 
  try{ 
  RmiServer server = new RmiServer(); 
  } 
  catch (Exception e){ 
  e.printStackTrace(); 
  System.exit(1); 
  } 
  } 
} 
The above class uses LocateRegistry class to create a remote object registry that accepts calls on 
a specific port 

Output of the above program: 

C:\rose>javac RmiServer.java 
C:\rose>java RmiServer  
this 
address=roseindi/192.168.10.104,port=3232t= 
_3232 
Here is the code of RMI Client: 

import java.rmi.*; 
import java.rmi.registry.*; 
import java.net.*; 
 
public class RmiClient{ 
  static public void main(String args[]){ 
  ReceiveMessageInterface rmiServer; 
  Registry registry; 
  String serverAddress=args[0]; 
  String serverPort=args[1]; 
  String text=args[2]; 
  System.out.println 
   ("sending " + text + " to " +serverAddress + ":" + serverPort); 
  try{ 
  registry=LocateRegistry.getRegistry 
  (serverAddress,(new Integer(serverPort)).intValue()); 
  rmiServer=(ReceiveMessageInterface)(registry.lookup("rmiServer")); 
  // call the remote method 
  rmiServer.receiveMessage(text); 
  } 
  catch(RemoteException e){ 
  e.printStackTrace(); 
  } 
  catch(NotBoundException e){ 
  System.err.println(e); 



 
 

  ARMIET/IT/ DEGREE/ VI  SEM / DS/  OF 
 

  } 
  } 
}  
lookup(): This is the method that returns a reference, a stub, for the remote object associated 
with the specified name. 

Output of the above program: 

 C:\rose>java RmiClient 192.168.10.104 
3232 roseindia 
 sending roseindia to 192.168.10.104:3232 
 
C:\rose> 
If the RMI client sends any type of  massage then massage will be displayed on the RMI  Server. 

C:\rose>java RmiServer 
this 
address=roseindi/192.168.10.104,port=3232 
roseindia 
 

  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Conclusion : Hence we have studied and run Client-Server based RMI program  successfully. 
 



 
 

  ARMIET/IT/ DEGREE/ VI  SEM / DS/  OF 
 

EXPERIMENT NO:3          DOP:                  DOS:            GRADE: 

TITLE OF EXPERIMENT: CLOCK SYNCHRONIZATION 

AIM:  

 

 
AIM: To Study Implementation of Clock Synchronization (logical/physical). 
 
THEORY: 
 
Introduction: 
 

 
Steps: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

  ARMIET/IT/ DEGREE/ VI  SEM / DS/  OF 
 

EXPERIMENT NO:4          DOP:                  DOS:            GRADE: 

TITLE OF EXPERIMENT: ELECTION ALGO BY BULLY 

AIM: IMPLEMENTATION OF BULLY ELECTION ALGO 

 

 
AIM: To Study Implementation of Election algorithm. 

  
 
THEORY: 
The bully algorithm is a method in distributed computing for dynamically electing a coordinator 
by process ID number. The process with the highest process ID number is selected as the 
coordinator. 

When a process P determines that the current coordinator is down because of message timeouts 
or failure of the coordinator to initiate a handshake, it performs the following sequence of actions: 

 P broadcasts an election message (inquiry) to all other processes with higher process IDs, 
expecting an "I am alive" response from them if they are alive.  

 If P hears from no process with a higher process ID than it, it wins the election and 
broadcasts victory.  

 If P hears from a process with a higher ID, P waits a certain amount of time for any process 
with a higher ID to broadcast itself as the leader. If it does not receive this message in time, 
it re-broadcasts the election message.  

 If P gets an election message (inquiry) from another process with a lower ID it sends an "I 
am alive" message back and starts new elections.  

 Assumptions 

  Each process knows the ID and address of every other process 

 Communication is reliable 

 A process initiates an election if it just recovered from failure or it notices that the 
coordinator has failed 

 Three types of messages: Election, OK, Coordinator 

 Several processes can initiate an election simultaneously 

  Need consistent result 

Details: 

 Any process P can initiate an election 
 P sends Election messages to all process with higher IDs and awaits OK messages 

              – If no OK messages, P becomes coordinator and sends Coordinator messages to all       
                      processes with lower IDs 
              – If it receives an OK, it drops out and waits for an Coordinator message 

 If a process receives an Election message 
              – Immediately sends Coordinator message if it is the process with highest ID 
              – Otherwise, returns an OK and starts an election 

 If a process receives a Coordinator message, it treats sender as the coordinator. 
 
 

http://en.wikipedia.org/wiki/Distributed_computing
http://en.wikipedia.org/wiki/Distributed_Computing#Coordinator_Election
http://en.wikipedia.org/wiki/Distributed_Computing#Coordinator_Election


 
 

  ARMIET/IT/ DEGREE/ VI  SEM / DS/  OF 
 

 
 
Example: 
 
 

 

 

 

Program Code: 

#include<stdio.h> 

#include<conio.h> 

#include<alloc.h> 

#include<stdlib.h> 
  
struct process { 
   int no; 
   int priority; 
   int active; 
   struct process *next; 
}; 
typedef struct process proc; 
  
struct priority { 
   int pri; 
   struct priority *next; 



 
 

  ARMIET/IT/ DEGREE/ VI  SEM / DS/  OF 
 

   proc *pp; 
}; 
typedef struct priority pri; 
  
pri* find_priority(proc *head, pri *head1) { 
   proc *p1; 
   pri *p2, *p3; 
   p1 = head; 
  
   while (p1->next != head) { 
      if (p1->active == 1) { 
         if (head1 == NULL) { 
            head1 = (pri*) malloc(sizeof(pri)); 
            head1->pri = p1->priority; 
            head1->next = NULL; 
            head1->pp = p1; 
            p2 = head1; 
         } else { 
            p3 = (pri*) malloc(sizeof(pri)); 
            p3->pri = p1->priority; 
            p3->pp = p1; 
            p3->next = NULL; 
            p2->next = p3; 
            p2 = p2->next; 
         } 
         p1 = p1->next; 
      } else 
         p1 = p1->next; 
   } //end while 
    
   p3 = (pri*) malloc(sizeof(pri)); 
   p3->pri = p1->priority; 
   p3->pp = p1; 
   p3->next = NULL; 
   p2->next = p3; 
   p2 = p2->next; 
   p3 = head1; 
  
   return head1; 
} //end find_priority() 
  
int find_max_priority(pri *head) { 
   pri *p1; 
   int max = -1; 
   int i = 0; 
   p1 = head; 
  
   while (p1 != NULL) { 
      if (max < p1->pri && p1->pp->active == 1) { 
         max = p1->pri; 
         i = p1->pp->no; 
      } 
      p1 = p1->next; 
   } 



 
 

  ARMIET/IT/ DEGREE/ VI  SEM / DS/  OF 
 

   return i; 
} 
  
void bully() { 
   proc *head; 
   proc *p1; 
   proc *p2; 
   int n, i, pr, maxpri, a, pid, max, o; 
   char ch; 
  
   head = p1 = p2 = NULL; 
  
   printf("\nnEnter how many process: "); 
   scanf("%d", &n); 
  
   for (i = 0; i < n; i++) { 
      printf("\nEnter priority of process %d: ", i + 1); 
      scanf("%d", &pr); 
    
      printf("\nIs process with id %d is active ?(0/1) :", i + 1); 
      scanf("%d", &a); 
       
   if (head == NULL) { 
         head = (proc*) malloc(sizeof(proc)); 
         if (head == NULL) { 
            printf("\nMemory cannot be allocated"); 
            getch(); 
            exit(0); 
         } 
         head->no = i + 1; 
         head->priority = pr; 
         head->active = a; 
         head->next = head; 
         p1 = head; 
      } else { 
         p2 = (proc*) malloc(sizeof(proc)); 
         if (p2 == NULL) { 
            printf("\nMemory cannot be allocated"); 
            getch(); 
            exit(0); 
         } 
         p2->no = i + 1; 
         p2->priority = pr; 
         p2->active = a; 
         p1->next = p2; 
         p2->next = head; 
         p1 = p2; 
      } 
   } //end for 
  
   printf("\nEnter the process id that invokes election algorithm: "); 
   scanf("%d", &pid); 
   p2 = head; 
   while (p2->next != head) { 



 
 

  ARMIET/IT/ DEGREE/ VI  SEM / DS/  OF 
 

      if (p2->no == pid) { 
         p2 = p2->next; 
         break; 
      } 
      p2 = p2->next; 
   } 
  
   printf("\nProcess with id %d has invoked election algorithm", pid); 
   printf("\t\nElection message is sent to processes"); 
    
   while (p2->next != head) { 
      if (p2->no > pid) 
         printf("%d", p2->no); 
      p2 = p2->next; 
   } 
  
   printf("%d", p2->no); 
   p2 = head; 
   max = 0; 
  
   while (1) { 
      if (p2->priority > max && p2->active == 1) 
         max = p2->no; 
      p2 = p2->next; 
      if (p2 == head) 
         break; 
   } 
  
   printf("\n\tProcess with the id %d is the co-ordinator", max); 
    
   while (1) { 
      printf("\nDo you want to continue?(y/n): "); 
      flushall(); 
      scanf("%c", &ch); 
      if (ch == 'n' || ch == 'N') 
         break; 
      p2 = head; 
  
      while (1) { 
         printf("\nEnter the process with id %d is active or not (0/1): ", 
               p2->no); 
         scanf("%d", &p2->active); 
         p2 = p2->next; 
         if (p2 == head) 
            break; 
      } 
    
      printf("\nEnter the process id that invokes election algorithm: "); 
      scanf("%d", &pid); 
    
      printf("\n\tElection message is sent to processes "); 
  
      while (p2->next != head) { 
         if (p2->no > pid) 



 
 

  ARMIET/IT/ DEGREE/ VI  SEM / DS/  OF 
 

            printf("%d", p2->no); 
         p2 = p2->next; 
      } 
      printf("%d", p2->no); 
      p2 = head; 
      max = 0; 
  
      while (1) { 
         if (p2->no > max && p2->active == 1) 
            max = p2->no; 
         p2 = p2->next; 
         if (p2 == head) 
            break; 
      } 
      printf("\n\tProcess with id %d is the co-ordinator", max); 
   } 
} 
  
void main() { 
   clrscr(); 

bully(); 

getch(); 

} 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 
 
 
 
Conclusion : Hence we have studied and implemented Bully Election Algo  successfully. 

 

 



 
 

  ARMIET/IT/ DEGREE/ VI  SEM / DS/  OF 
 

EXPERIMENT NO:5          DOP:                  DOS:            GRADE: 

TITLE OF EXPERIMENT: MUTUAL EXCLUSION 

AIM: IMPLEMENTATION OF MUTUAL EXCLUSION ALGO 

 

 
AIM: To study Implementation of Mutual Exclusion algorithms. 
 
THEORY: 
 
In computer science, mutual exclusion refers to the requirement of ensuring that no two 
concurrent processes are in their critical section at the same time; it is a basic requirement in 
concurrency control, to prevent race conditions. Here, a critical section refers to a period when the 
process accesses a shared resource, such as shared memory. The requirement of mutual exclusion 
was first identified and solved by Edsger W. Dijkstra in his seminal 1965 paper titled Solution of a 
problem in concurrent programming control, and is credited as the first topic in the study of 
concurrent algorithms. 
 
Program Code: 
 
#include <pthread.h> 
 #include <stdio.h> 
 int count = 0; 
 pthread_mutex_t thread_lock; 
 
 void* run_thread() 
{ 
    pthread_mutex_lock(&thread_lock); 
    pthread_t thread_id = pthread_self(); 
   printf("Thread %u: Current value of count = %d\n", thread_id, count); 
    printf("Thread %u incrementing count ...\n"); 
    count++; 
    sleep(1); 
    printf("Value of count after incremented by thread %u = %d\n", thread_id, count); 
    pthread_mutex_unlock(&thread_lock); 
    pthread_exit(NULL); 
 } 
 
 int main (int argc, char *argv[]) 
 { 
    pthread_t thread_array[4]; 
    int i = 0, ret, thread_num = 4; 
 
    for (i = 0; i < thread_num; i++) { 
       if ((ret = pthread_create(&thread_array[i], NULL, run_thread, NULL)==-1) {          printf("Thread 
creation failed with return code: %d", ret); 
          exit(ret); 
      } 
   } 
    pthread_exit(NULL);} 
Conclusion: 

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Concurrent_computing
http://en.wikipedia.org/wiki/Process_(computing)
http://en.wikipedia.org/wiki/Critical_section
http://en.wikipedia.org/wiki/Concurrency_control
http://en.wikipedia.org/wiki/Race_condition
http://en.wikipedia.org/wiki/Shared_memory
http://en.wikipedia.org/wiki/Edsger_W._Dijkstra
http://en.wikipedia.org/wiki/Concurrent_algorithm


 
 

  ARMIET/IT/ DEGREE/ VI  SEM / DS/  OF 
 

EXPERIMENT NO: 6            DOP:                  DOS:            GRADE: 

TITLE OF EXPERIMENT: MULTI-THREADED CLIENT-SERVER PROCESSES 

AIM: WAP FOR MT CLIENT-SERVER PROCESSES. 

 

 
AIM: To write a Program for multi-threaded client/server processes. 
THEORY: 
 
Multithreading is mainly found in multitasking operating systems. Multithreading is a widespread 
programming and execution model that allows multiple threads to exist within the context of a 
single process. These threads share the process's resources, but are able to execute independently. 
The threaded programming model provides developers with a useful abstraction of concurrent 
execution. Multithreading can also be applied to a single process to enable parallel execution on a 
multiprocessing system. 
 
Program Code: 
Server Side: 
#include<stdio.h> 
#include<string.h>    //strlen 
#include<stdlib.h>    //strlen 
#include<sys/socket.h> 
#include<arpa/inet.h> //inet_addr 
#include<unistd.h>    //write 
#include<pthread.h> //for threading , link with lpthread 
 
//the thread function 
void *connection_handler(void *); 
 
int main(int argc , char *argv[]) 
{ 
    int socket_desc , client_sock , c , *new_sock; 
    struct sockaddr_in server , client; 
 
    //Create socket 
    socket_desc = socket(AF_INET , SOCK_STREAM , 0); 
    if (socket_desc == -1) 
    { 
        printf("Could not create socket"); 
    } 
    puts("Socket created"); 
 
    //Prepare the sockaddr_in structure 
    server.sin_family = AF_INET; 
    server.sin_addr.s_addr = INADDR_ANY; 
    server.sin_port = htons( 3000 ); 
 
    //Bind 
    if( bind(socket_desc,(struct sockaddr *)&server , sizeof(server)) < 0) 
    { 
        //print the error message 

http://en.wikipedia.org/wiki/Parallel_computing
http://en.wikipedia.org/wiki/Multiprocessing


 
 

  ARMIET/IT/ DEGREE/ VI  SEM / DS/  OF 
 

        perror("bind failed. Error"); 
        return 1; 
    } 
    puts("bind done"); 
 
    //Listen 
    listen(socket_desc , 3); 
 
    //Accept and incoming connection 
    puts("Waiting for incoming connections..."); 
    c = sizeof(struct sockaddr_in); 
 
        c=sizeof(struct sockaddr_in); 
       while(client_sock=accept(socket_desc,(struct sockaddr*)&client,(socklen_t*)&c)) 
       { 
        puts("Connection accepted"); 
 
        pthread_t sniffer_thread; 
        new_sock = malloc(1); 
        *new_sock = client_sock; 
 
        if( pthread_create( &sniffer_thread , NULL ,  connection_handler , (void*) new_sock) < 0) 
        { 
            perror("could not create thread"); 
            return 1; 
        } 
 
        puts("Handler assigned"); 
    } 
 
    if (client_sock < 0) 
    { 
        perror("accept failed"); 
        return 1; 
    } 
    return 0; 
} 
/* 
  This will handle connection for each client 
  */ 
void *connection_handler(void *socket_desc) 
{ 
    //Get the socket descriptor 
    int sock = *(int*)socket_desc; 
    int n; 
 
        char    sendBuff[100], client_message[2000]; 
 
      while((n=recv(sock,client_message,2000,0))>0) 
      { 
 
        send(sock,client_message,n,0); 
      } 



 
 

  ARMIET/IT/ DEGREE/ VI  SEM / DS/  OF 
 

      close(sock); 
 
      if(n==0) 
      { 
        puts("Client Disconnected"); 
      } 
      else 
      { 
        perror("recv failed"); 
      } 
    return 0; 
} 

Client Side: 
#include <stdio.h> 
#include <string.h> 
#include <sys/types.h> 
#include <sys/socket.h> 
#include <netinet/in.h> 
#include <arpa/inet.h> 
#include <stdlib.h> 
#include <unistd.h> 
 
#define MAX_SIZE 50 
 
int main() 
{ 
    int sock_desc; 
    struct sockaddr_in serv_addr; 
    char sbuff[MAX_SIZE],rbuff[MAX_SIZE]; 
 
    if((sock_desc = socket(AF_INET, SOCK_STREAM, 0)) < 0) 
        printf("Failed creating socket\n"); 
 
    bzero((char *) &serv_addr, sizeof (serv_addr)); 
 
    serv_addr.sin_family = AF_INET; 
    serv_addr.sin_addr.s_addr = inet_addr("127.0.0.1"); 
    serv_addr.sin_port = htons(3000); 
 
    if (connect(sock_desc, (struct sockaddr *) &serv_addr, sizeof (serv_addr)) < 0) { 
        printf("Failed to connect to server\n"); 
        return -1; 
    } 
 
    printf("Connected successfully - Please enter string\n"); 
    while(fgets(sbuff, MAX_SIZE , stdin)!=NULL) 
    { 
      send(sock_desc,sbuff,strlen(sbuff),0); 
 
          if(recv(sock_desc,rbuff,MAX_SIZE,0)==0) 
           printf("Error"); 
          else 



 
 

  ARMIET/IT/ DEGREE/ VI  SEM / DS/  OF 
 

           fputs(rbuff,stdout); 
 
       bzero(rbuff,MAX_SIZE);//to clean buffer-->IMP otherwise previous word characters also came 
    } 
        close(sock_desc); 
    return 0; 
 
} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusion: Hence we have understood and run this multi-threaded client-server processes 
program successfully. 

 



 
 

  ARMIET/IT/ DEGREE/ VI  SEM / DS/  OF 
 

EXPERIMENT NO:7          DOP:                  DOS:            GRADE: 

TITLE OF EXPERIMENT: PROCESS/CODE MIGRATION 

AIM: WAP TO DEMONSTRATE PROCESS/CODE MIGRATION 

 

AIM: To write a Program to demonstrate process/code migration.  
THEORY: 
Introduction: 
 
Program Code: 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

  ARMIET/IT/ DEGREE/ VI  SEM / DS/  OF 
 

EXPERIMENT NO:8          DOP:                  DOS:            GRADE: 

TITLE OF EXPERIMENT: EJB DISTRIBUTED APPLICATION 

AIM: WRITE A DISTRIBUTED APPLICATION USING EJB. 

 

 
AIM: Write a distributed application using EJB. 
 
THEORY: 
 
Enterprise JavaBeans(EJB) is a specification for a component model that promises to 
simplify the development of multi-tier application systems capable of supporting high- 
volume business transactions [Spitzer 98]. EJB is not an implementation, but a specification 
owned by JavaSoft. JavaSoft is acting in the role of a standards organization to expedite the 
evolution of EJB technology. 
EJB encourages innovation by allowing multiple vendors to develop different 
implementations of the specification. Most vendors add unique features to core application 
server functionality to differentiate themselves from their competitors. However, the EJB 
specification maintains that software developed in an EJB-compliant server can run in 
another EJB-compliant server seamlessly and without adaptation. In this paper, we examine 
Enterprise Bean portability among EJB-compliant servers and identify practical obstacles to 
portability. 
 
Program Code: 
 
package org.acme; 
 
import java.rmi.RemoteException; 
import javax.ejb.*; 
 
public class HelloBean implements SessionBean { 
  private SessionContext sessionContext; 
  public void ejbCreate() { 
  } 
  public void ejbRemove() { 
  } 
  public void ejbActivate() { 
  } 
  public void ejbPassivate() { 
  } 
  public void setSessionContext(SessionContext sessionContext) { 
    this.sessionContext = sessionContext; 
  } 
  public String sayHello() throws java.rmi.RemoteException { 
    return "Hello World!!!!!"; 
  } 
} 

Conclusion: 
 



 
 

  ARMIET/IT/ DEGREE/ VI  SEM / DS/  OF 
 

 

EXPERIMENT NO: 9           DOP:                  DOS:            GRADE: 

TITLE OF EXPERIMENT: CORBA 

AIM: WAP USING CORBA TO DEMONSTRATE OBJECT BROKERING 

 

 
AIM: Write a program using CORBA to demonstrate object brokering. 
THEORY: 
 
OBJECTIVE (AIM) OF THE EXPERIMENT: 

 To Create a Component for retrieving stock market exchange information using CORBA. 
 
FACILITIES REQUIRED AND PROCEDURE: 
 
a) Facilities Required: 
S.No.                                                      Facilities required Quantity 
 
  1                                                                                 System 1 
  2                                                                        O/S Windows XP 
  3                                                                           S/W name JAVA 
 
b) Procedure: 
 
Step no.                                                            Details of the step 
 
     1                                                                     Define the IDL interface 
     2                                                                     Implement the IDL interface using idlj compiler 
     3                                                                     Create a Client Program 
     4                                                                     Create a Server Program 
     5                                                                     Start orbed. 
     6                                                                     Start the Server. 
     7                                                                     Start the client 
 
c) Program: 
 
Define IDL Interface 
 
modulesimplestocks{ 
interfaceStockMarket 
{ 
floatget_price(in string symbol); 
}; 
}; 
Note: Save the above module as simplestocks.idl 
Compile the saved module using the idlj compiler as follows . 
C:\WT\corba>idlj simplestocks.idl 
After compilation a sub directory called simplestocks same as module name will be created and 
it generates the following files as listed below. 
C:\WT\corba>idlj –fall simplestocks.idl 



 
 

  ARMIET/IT/ DEGREE/ VI  SEM / DS/  OF 
 

C:\WT\corba>cd simplestocks 
C:\WT\corba\simplestocks>dir 
Volume in drive C has no label. 
Volume Serial Number is 348A-27B7 
Directory of C:\suji\corba\simplestocks 

02/06/2007 11:38 AM<DIR> 

02/06/2007 11:38 AM <DIR> .. 

02/06/2007 11:38 AM 2,071 StockMarketPOA.java 
02/07/2007 02:15 PM 2,090 _StockMarketStub.java 
02/07/2007 02:15 PM 865 StockMarketHolder.java 
02/07/2007 02:15 PM 2,043 StockMarketHelper.java 
02/07/2007 02:15 PM 359 StockMarket.java 
02/07/2007 02:15 PM 339 StockMarketOperations.java 
02/07/2007 02:08 PM 226 StockMarket.class 
02/07/2007 02:08 PM 180 StockMarketOperations.class 
02/07/2007 02:08 PM 2,818 StockMarketHelper.class 
02/07/2007 02:08 PM 2,305 _StockMarketStub.class 
02/06/2007 11:44 AM 2,223 StockMarketPOA.class 
11 File(s) 15,519 bytes 
2 Dir(s) 6,887,636,992 bytes free 
C:\WT\corba\simplestocks> 
 
// Implement the interface 
importorg.omg.CORBA.*; 
importsimplestocks.*; 
public class StockMarketImpl extends StockMarketPOA{ private ORB orb; 
public void setORB(ORB v){orb=v;} 
public float get_price(String symbol) { 
float price=0; 
for(int i=0;i<symbol.length();i++){ 
price+=(int)symbol.charAt(i);} 
price/=5; 
return price;} 
publicStockMarketImpl(){super();}} 
 
//Server Program: 
 
importorg.omg.CORBA.*; 
importorg.omg.CosNaming.*; 
importorg.omg.CosNaming.NamingContextPackage.*; 
importorg.omg.PortableServer.*; 
importorg.omg.PortableServer.POA.*; 
importjava.util.Properties; 
importsimplestocks.*; 
public class StockMarketServer{ 
public static void main(String[] args) { 
try { ORB orb=ORB.init(args,null); 
POA rootpoa=POAHelper.narrow(orb.resolve_initial_references("RootPOA")); 
rootpoa.the_POAManager().activate(); 
StockMarketImplss=new StockMarketImpl(); 



 
 

  ARMIET/IT/ DEGREE/ VI  SEM / DS/  OF 
 

ss.setORB(orb); 
org.omg.CORBA.Object ref=rootpoa.servant_to_reference(ss); 
StockMarkethrf=StockMarketHelper.narrow(ref); 
org.omg.CORBA.Objectorf=orb.resolve_initial_references("NameService"); 
NamingContextExtncrf=NamingContextExtHelper.narrow(orf); 
NameComponentpath[]=ncrf.to_name("StockMarket"); 

ncrf.rebind(path,hrf); 

System.out.println("StockMarket server is ready"); 
//Thread.currentThread().join(); 
orb.run();}catch(Exception e){ 
e.printStackTrace();}}} 
 
// Client Program: 
 
importorg.omg.CORBA.*; 
importorg.omg.CosNaming.*; 
importsimplestocks.*; 
importorg.omg.CosNaming.NamingContextPackage.*; 
public class StockMarketClient{ 
public static void main(String[] args) { 
try 
{ 
ORB orb=ORB.init(args,null); 
NamingContextExt 
ncRef=NamingContextExtHelper.narrow(orb.resolve_initial_references("NameService")) 
//NameComponentpath[]={new NameComponent("NASDAQ","")}; 
StockMarket market=StockMarketHelper.narrow(ncRef.resolve_str("StockMarket")); 
System.out.println("Price of My company is"+market.get_price("My_COMPANY"));} 
catch(Exception e){ 
e.printStackTrace();}}} 
Compile the above files as 
C:\WT\corba>javac *.java 

C:\WT\corba>start orbd -ORBInitialPort 1050 -ORBInitialHostlocalhost 

C:\WT\corba>start java StockMarketServer -ORBInitialPort 1050 -ORBInitialHost 
localhost 
C:\WT\corba> 
StockMarket server is ready 
C:\WT\corba>java StockMarketClient -ORBInitialPort 1050 –ORBInitialHostlocalhost 
 
d) Output: 

Server Side: 

D:\>cd MWT\corbastock 
D:\MWT\CorbaStock>set path="c:\j2sdk1.4.1\bin"; 
D:\MWT\CorbaStock>idlj simplestocks.idl 
D:\MWT\CorbaStock>idlj -fall simplestocks.idl 
D:\MWT\CorbaStock>javac *.java 
D:\MWT\CorbaStock>start orbd -ORBInitialPort 1050 -ORBInitialHostlocalhost 



 
 

  ARMIET/IT/ DEGREE/ VI  SEM / DS/  OF 
 

D:\MWT\CorbaStock>java StockMarketServer -ORBInitialPort 1050 -ORBInitialHostlocalhost 
StockMarket server is ready 
 
 
Client Side: 
D:\MWT\CorbaStock>java StockMarketClient -ORBInitialPort 1050 -ORBInitialHostlocalhost 
Price of My Company is: 165.6 
D:\MWT\CorbaStock> 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Conclusion: 
Thus the above program is used to develop a component for retrieving stock market exchange 
information using CORBA and it is executed successfully. 
 

 



 
 

  ARMIET/IT/ DEGREE/ VI  SEM / DS/  OF 
 

EXPERIMENT NO: 10          DOP:                  DOS:            GRADE: 

TITLE OF EXPERIMENT: DCOM/.NET 

AIM: DEPLOY A DISTRIBUTED APPLICATION USING .NET FRAMEWORK 

 

 

AIM: Use .Net framework to deploy a distributed application. 
THEORY: 
 
Introduction: 
Program Code: 
Develop a component to retrieve Message Box Information Using DCOM/.NET: 
 
OBJECTIVE (AIM) OF THE EXPERIMENT: 
 

 To create a component to retrieve message box information using DCOM/.NET 
 
FACILITIES REQUIRED AND PROCEDURE 
 

a) Facilities Required: 
 

S.No.                                                                         Facilities required Quantity 
 
   1.                                                                                              System 1 
   2.                                                                                      O/S Windows XP 
   3.                                                                          S/W name Microsoft Visual Studio .Net 
 

b) Procedure: 
 

Step no.                                                                  Details of the step 
 
PART I 
     1.                                                                          Start the process. 
     2.                                                                          Open Visual Studio. NET. 
     3.                                                                          Goto File->New->Project->ClassLibrary|Empty                                         
                                                                                     Library->OK 
     4.                                                                         Goto Solution Explorer->Right Click->Add->Add   
                                                                                   Component|Add New Item->COM Class-_OK 
     5.                                                                         Add the following codings Save & Build. 
PART II 
1. 
Go To Start->Microsoft Visual.Net 2003->Visual Stufio.Net tools->Command prompt Setting 
environment for using Microsoft Visual Studio .NET 2003 tools. (If you have another version of 
Visual Studio or Visual C++ installed and wish to use its tools from the command line, run 
vcvars32.bat for that version.) C:\Documents and Settings\administrator>sn -k ms.snk 
Microsoft (R) .NET Framework Strong Name Utility Version 1.1.4322.573 Copyright (C) Microsoft 
Corporation 1998-2002. All rights reserved. Key pair written to ms.snk C:\Document and 
Settings\administrator> Copy ms.snk to bin directory (locate the class library) 
 
 



 
 

  ARMIET/IT/ DEGREE/ VI  SEM / DS/  OF 
 

 
2. 
start -> settings -> control panel->administrative tools->component services-> computer->my 
computer->com + Application -> new ->application ->next -> create an empty application-> choose 
the server Application -> enter the new Application name (mssg) -> next ->choose the interactive 
user-> next->finish. 
3. 
expandmssg -> click the components ->right click -> new-> component - >next->install new event 
classes-> select the class library1.tlb(class library->bin->open->next->finish. 
 
PART III 
1.            Open Visual studio .net -> file-> new ->Project->Windows Application 
2.            Create one label box,one text box and one button in the form. 
3.            Include the following code in the Button click event 
4.            execute the project 
 

c) Program: 
 

PART-I 
 
Public Function test () As String 
Dim str = "HaiMiddleWare Technology" 
Return (str) 
End Function 
Public Function create () As String 
MsgBox(test()) 
End Function 
 
PART-III 
 
Imports msg 
Public Class Form1 
Inherits System.Windows.Forms.Form 
Dim mo As New msg.ComClass1 
Private Sub Button1_Click (ByVal sender As System.Object, ByVal e As System.EventArgs) 
Handles Button1.Click 
textbox1.text = mo.test() 
End Sub 
End Class 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

  ARMIET/IT/ DEGREE/ VI  SEM / DS/  OF 
 

d) Output: 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Conclusion: 
Thus the above program is used to develop a component to retrieve message box information using 
DCOM/.Net and it is executed successfully. 
 
 
 

 

 

 


