

 ONLY FOR ARMIET STUDENTS……….

LABORATORY MANUAL CONTENTS

This manual is intended for the Third year students of Information Technology

in the subject of System And Web Security. This manual typically contains

practical/Lab Sessions related Software Engineering covering various aspects related the

subject to enhanced understanding.

Although, as per the syllabus, study of Vulnerabilities ,OS, Authentication, Web

Security is prescribed, we have made the efforts to cover various aspects of System and

web securities covering different Techniques to prevent and secured software to

develop the project which contains most important criteria of security etc. elaborative

understandable concepts and conceptual visualization.

Students are advised to thoroughly go though this manual rather than only topics

mentioned in the syllabus as practical aspects are the key to understanding and

conceptual visualization of theoretical aspects covered in the books.

Good Luck for your Enjoyable Laboratory Sessions

 Mr. Likhesh Kolhe Mr. Likhesh Kolhe

HOD,IT Department Lecturer, IT Department

 ONLY FOR ARMIET STUDENTS……….

Do’s and Don’ts in Laboratory:

1. Make entry in the Log Book as soon as you enter the Laboratory.

2. All the students should sit according to their roll numbers starting from their left to

right.

3. All the students are supposed to enter the terminal number in the log book.

 4. Do not change the terminal on which you are working.

5. All the students are expected to get at least the algorithm of the program/concept to be

implemented.

6. Strictly observe the instructions given by the teacher/Lab Instructor.

Instruction for STUDENTS

1. Submission related to whatever lab work has been completed should be done during the

next lab session. The immediate arrangements for printouts related to submission on the

day of practical assignments.

2. Students should be taught for taking the printouts under the observation of lab

teacher.

3. The promptness of submission should be encouraged by way of marking and

evaluation patterns that will benefit the sincere students.

 ONLY FOR ARMIET STUDENTS……….

PREREQUISITES

Define Software.

Define System.

What Do you mean by security?

What is Vulnerabilities?

What is Virus?

What are the different types of virus?

What Is Network & how to maintain its security.

What is IP Address?

What is SQL injection?

What is strong and Weak Security?

What is CAPTCHA?

What are the different types of attacks?

 ONLY FOR ARMIET STUDENTS……….

SUBJECT INDEX

Sr No NAME OF EXPERIMENT

1 To Design and implement the RSA cryptosystem.

2 To Implement Digital signature scheme using RSA.

3 To Simulate the Buffer overflow attack.

4 To Simulate the Salami attack.

5 To Design and implement a program for adding passwords to a file.

The program should be able to filter out weak passwords (based on

dictionary words or variants) and store the strong passwords by creating

a hash of user ID and password.

6 To Study of a packet sniffer like wireshark, or tcpdump. Use this tool to

capture and analyze data in packets.

7 To Study and install nmap. Use it with different options to scan open

ports, perform OS fingerprinting, do a ping scan, tcp port scan, udp port

scan, etc

8 To Detect ARP spoofing using open source tool ARPWATCH

9 To Install an IDS (e.g. SNORT) and study the logs.

10 To study Use of iptables in linux to create firewalls.

11 To Implement a simple SQL injection attack.

 ONLY FOR ARMIET STUDENTS……….

EXPERIMENT NO 1

AIM :- To Design and implement the RSA cryptosystem.

THEORY:- RSA is one of the first practicable public-key cryptosystems and

is widely used for secure data transmission. In such a cryptosystem,

the encryption key is public and differs from the decryption key which is kept

secret. In RSA, this asymmetry is based on the practical difficulty

of factoring the product of two large prime numbers, the factoring problem.

RSA stands for Ron Rivest, Adi Shamir andLeonard Adleman, who first

publicly described the algorithm in 1977. Clifford Cocks, an English

mathematician, had developed an equivalent system in 1973, but it was

not declassified until 1997.

A user of RSA creates and then publishes a public key based on the two

large prime numbers, along with an auxiliary value. The prime numbers must

be kept secret. Anyone can use the public key to encrypt a message, but with

currently published methods, if the public key is large enough, only someone

with knowledge of the prime numbers can feasibly decode the

message. Breaking RSA encryption is known as the RSA problem; whether it

is as hard as the factoring problem remains an open question.

Key generation

RSA involves a public key and a private key. The public key can be known by

everyone and is used for encrypting messages. Messages encrypted with the

public key can only be decrypted in a reasonable amount of time using the

private key. The keys for the RSA algorithm are generated the following way:

http://en.wikipedia.org/wiki/Public-key_cryptography
http://en.wikipedia.org/wiki/Cryptosystem
http://en.wikipedia.org/wiki/Encryption_key
http://en.wikipedia.org/wiki/Decryption_key
http://en.wikipedia.org/wiki/Factorization
http://en.wikipedia.org/wiki/Prime_number
http://en.wikipedia.org/wiki/Factoring_problem
http://en.wikipedia.org/wiki/Ron_Rivest
http://en.wikipedia.org/wiki/Adi_Shamir
http://en.wikipedia.org/wiki/Leonard_Adleman
http://en.wikipedia.org/wiki/Clifford_Cocks
http://en.wikipedia.org/wiki/Classified_information
http://en.wikipedia.org/wiki/Prime_number
http://en.wikipedia.org/wiki/Encryption
http://en.wikipedia.org/wiki/RSA_problem
http://en.wikipedia.org/wiki/Private_key

 ONLY FOR ARMIET STUDENTS……….

1. Choose two distinct prime numbers p and q.

 For security purposes, the integers p and q should be chosen at

random, and should be of similar bit-length. Prime integers can be efficiently

found using a primality test.

2. Compute n = pq.

 n is used as the modulus for both the public and private keys. Its length,

usually expressed in bits, is the key length.

3. Compute φ(n) = φ(p)φ(q) = (p − 1)(q − 1) = n - (p + q -1), where φ is Euler's

totient function.

4. Choose an integer e such that 1 < e < φ(n) and gcd(e, φ(n)) = 1; i.e., e and

φ(n) are coprime.

 e is released as the public key exponent.

 e having a short bit-length and small Hamming weight results in more

efficient encryption – most commonly 216 + 1 = 65,537. However, much smaller

values of e (such as 3) have been shown to be less secure in some settings.

5. Determine d as d ≡ e−1 (mod φ(n)); i.e., d is the multiplicative

inverse of e (modulo φ(n)).

 This is more clearly stated as: solve for d given d⋅e ≡ 1 (mod φ(n))

 This is often computed using the extended Euclidean algorithm. Using the

pseudocode in the Modular integers section, inputs a and n correspond

to e and φ(n), respectively.

 d is kept as the private key exponent.

The public key consists of the modulus n and the public (or encryption)

exponent e. The private key consists of the modulus n and the private (or

http://en.wikipedia.org/wiki/Prime_number
http://en.wikipedia.org/wiki/Primality_test
http://en.wikipedia.org/wiki/Modular_arithmetic
http://en.wikipedia.org/wiki/Key_length
http://en.wikipedia.org/wiki/Euler%27s_totient_function
http://en.wikipedia.org/wiki/Euler%27s_totient_function
http://en.wikipedia.org/wiki/Euler%27s_totient_function
http://en.wikipedia.org/wiki/Greatest_common_divisor
http://en.wikipedia.org/wiki/Coprime
http://en.wikipedia.org/wiki/Bit-length
http://en.wikipedia.org/wiki/Hamming_weight
http://en.wikipedia.org/wiki/Modular_multiplicative_inverse
http://en.wikipedia.org/wiki/Modular_multiplicative_inverse
http://en.wikipedia.org/wiki/Modular_multiplicative_inverse
http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm#Modular_integers

 ONLY FOR ARMIET STUDENTS……….

decryption) exponent d, which must be kept secret. p, q, and φ(n) must also be

kept secret because they can be used to calculate d.

 An alternative, used by PKCS#1, is to choose d matching de ≡ 1 (mod

λ) with λ = lcm(p − 1, q − 1), where lcm is the least common multiple. Using λ

instead of φ(n) allows more choices for d. λ can also be defined using

the Carmichael function, λ(n).

 The ANSI X9.31 standard prescribes, IEEE 1363 describes,

and PKCS#1 allows, that p and q match additional requirements: being strong

primes, and being different enough that Fermat factorization fails.

Encryption

Alice transmits her public key (n, e) to Bob and keeps the private key d secret.

Bob then wishes to send message M to Alice.

He first turns M into an integer m, such that 0 ≤ m < n by using an agreed-

upon reversible protocol known as a padding scheme. He then computes the

ciphertext ccorresponding to

This can be done efficiently, even for 500-bit numbers, using Modular

exponentiation. Bob then transmits c to Alice.

Note that at least nine values of m will yield a ciphertext c equal to m, but this

is very unlikely to occur in practice.

Decryption

http://en.wikipedia.org/wiki/PKCS1
http://en.wikipedia.org/wiki/Least_common_multiple
http://en.wikipedia.org/wiki/Carmichael_function
http://en.wikipedia.org/w/index.php?title=ANSI_X9.31&action=edit&redlink=1
http://en.wikipedia.org/wiki/P1363
http://en.wikipedia.org/wiki/PKCS1
http://en.wikipedia.org/wiki/Strong_prime
http://en.wikipedia.org/wiki/Strong_prime
http://en.wikipedia.org/wiki/Strong_prime
http://en.wikipedia.org/wiki/Fermat_factorization
http://en.wikipedia.org/wiki/Alice_and_Bob
http://en.wikipedia.org/wiki/Alice_and_Bob
http://en.wikipedia.org/wiki/RSA_(cryptosystem)#Padding_schemes
http://en.wikipedia.org/wiki/Modular_exponentiation
http://en.wikipedia.org/wiki/Modular_exponentiation
http://en.wikipedia.org/wiki/Modular_exponentiation

 ONLY FOR ARMIET STUDENTS……….

Alice can recover m from c by using her private key exponent d via computing

Given m, she can recover the original message M by reversing the padding

scheme.

ALGORITHM:-

1) Pick two large prime numbers p and q, p != q;

2) Calculate n = p × q;

3) Calculate ø (n) = (p − 1)(q − 1);

4) Pick e, so that gcd(e, ø (n)) = 1, 1 < e < ø (n);

5) Calculate d, so that d · e mod ø (n) = 1, i.e., d is the multiplicative inverse of

e in mod ø (n);

6) Get public key as KU = {e, n};

7) Get private key as KR = {d, n}.

Encryption

For plaintext block P < n, its ciphertext C = P^e (mod n).

Decryption

For ciphertext block C, its plaintext is P = C^d (mod n).

CONCLUSION:- Hence we have studied and successfully implemented RSA

algorithm.

 ONLY FOR ARMIET STUDENTS……….

PROGRAM:-

RSA Cryptosystem

#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
#include<math.h>
#include<string.h>

long int p,q,n,t,flag,e[100],d[100],temp[100],j,m[100],en[100],i;
char msg[100];
int prime(long int);
void ce();
long int cd(long int);
void encrypt();
void decrypt();
void main()
{
clrscr();
printf("\nENTER FIRST PRIME NUMBER\n");
scanf("%d",&p);
flag=prime(p);
if(flag==0)
{
 printf("\nWRONG INPUT\n");
 getch();
 exit(1);
}
printf("\nENTER ANOTHER PRIME NUMBER\n");
scanf("%d",&q);
flag=prime(q);
if(flag==0||p==q)
{
 printf("\nWRONG INPUT\n");
 getch();
 exit(1);
}

 ONLY FOR ARMIET STUDENTS……….

printf("\nENTER MESSAGE\n");
fflush(stdin);
scanf("%s",msg);
for(i=0;msg[i]!=NULL;i++)
m[i]=msg[i];
n=p*q;
t=(p-1)*(q-1);
ce();
printf("\nPOSSIBLE VALUES OF e AND d ARE\n");
for(i=0;i<j-1;i++)
printf("\n%ld\t%ld",e[i],d[i]);
encrypt();
decrypt();
getch();
}
int prime(long int pr)
{
int i;
j=sqrt(pr);
for(i=2;i<=j;i++)
{
 if(pr%i==0)
 return 0;
}
return 1;
}
void ce()
{
int k;
k=0;
for(i=2;i<t;i++)
{
 if(t%i==0)
 continue;
 flag=prime(i);
 if(flag==1&&i!=p&&i!=q)
 {
 e[k]=i;

 ONLY FOR ARMIET STUDENTS……….

 flag=cd(e[k]);
 if(flag>0)
 {
 d[k]=flag;
 k++;
 }
 if(k==99)
 break;
 }
}
}
long int cd(long int x)
{
long int k=1;
while(1)
{
 k=k+t;
 if(k%x==0)
 return(k/x);
}
}
void encrypt()
{
long int pt,ct,key=e[0],k,len;
i=0;
len=strlen(msg);
while(i!=len)
{
 pt=m[i];
 pt=pt-96;
 k=1;
 for(j=0;j<key;j++)
 {
 k=k*pt;
 k=k%n;
 }
 temp[i]=k;
 ct=k+96;

 ONLY FOR ARMIET STUDENTS……….

 en[i]=ct;
 i++;
}
en[i]=-1;
printf("\nTHE ENCRYPTED MESSAGE IS\n");
for(i=0;en[i]!=-1;i++)
printf("%c",en[i]);
}
void decrypt()
{
long int pt,ct,key=d[0],k;
i=0;
while(en[i]!=-1)
{
 ct=temp[i];
 k=1;
 for(j=0;j<key;j++)
 {
 k=k*ct;
 k=k%n;
 }
 pt=k+96;
 m[i]=pt;
 i++;
}
m[i]=-1;
printf("\nTHE DECRYPTED MESSAGE IS\n");
for(i=0;m[i]!=-1;i++)
printf("%c",m[i]);
}

//Output Of the above program:-

 ONLY FOR ARMIET STUDENTS……….

RSA Inputs

RSA Result

http://4.bp.blogspot.com/-rkpv6wouzYU/UuZNASkHKgI/AAAAAAAAAcs/z92ldX1Iny4/s1600/C-code-to-implement-RSA-Algorithm.PNG
http://2.bp.blogspot.com/-TeTpRwoUixY/UuZNALzPeMI/AAAAAAAAAco/2F6Kjy2NTmM/s1600/C-code-to-implement-RSA-Algorithm-2.PNG

 ONLY FOR ARMIET STUDENTS……….

EXPERIMENT NO 2

AIM :- To Study Digital signature scheme using RSA.

THEORY:- A digital signature is a mathematical scheme for demonstrating the

authenticity of a digital message or document. A valid digital signature gives a recipient

reason to believe that the message was created by a known sender, such that the

sender cannot deny having sent the message (authentication and non-repudiation) and

that the message was not altered in transit (integrity). Digital signatures are commonly

used for software distribution, financial transactions, and in other cases where it is

important to detect forgery or tampering.

http://en.wikipedia.org/wiki/Authentication
http://en.wikipedia.org/wiki/Non-repudiation
http://en.wikipedia.org/wiki/Data_integrity

 ONLY FOR ARMIET STUDENTS……….

How it Works??

To create RSA signature keys, generate an RSA key pair containing a modulus N that is

the product of two large primes, along with integers e and d such that e d ≡ 1 (mod φ(N)),

where φ is the Euler phi-function. The signer's public key consists of N and e, and the

signer's secret key contains d.

To sign a message m, the signer computes σ ≡ md (mod N). To verify, the receiver

checks that σe ≡ m (mod N).

As noted earlier, this basic scheme is not very secure. To prevent attacks, one can first

apply a cryptographic hash function to the message m and then apply the RSA algorithm

described above to the result. This approach can be proven secure in the so-

called random oracle model Most early signature schemes were of a similar type: they

involve the use of atrapdoor permutation, such as the RSA function, or in the case of the

Rabin signature scheme, computing square modulo composite n. A trapdoor permutation

family is a family ofpermutations, specified by a parameter, that is easy to compute in the

forward direction, but is difficult to compute in the reverse direction without already

knowing the private key. However, for every parameter there is a "trapdoor" (private key)

which when known, easily decrypts the message. Trapdoor permutations can be viewed

as public-key encryption systems, where the parameter is the public key and the

trapdoor is the secret key, and where encrypting corresponds to computing the forward

direction of the permutation, while decrypting corresponds to the reverse direction.

Trapdoor permutations can also be viewed as digital signature schemes, where

computing the reverse direction with the secret key is thought of as signing, and

computing the forward direction is done to verify signatures. Because of this

correspondence, digital signatures are often described as based on public-key

cryptosystems, where signing is equivalent to decryption and verification is equivalent to

encryption, but this is not the only way digital signatures are computed.

http://en.wikipedia.org/wiki/Modular_arithmetic
http://en.wikipedia.org/wiki/Euler%27s_totient_function
http://en.wikipedia.org/wiki/Cryptographic_hash_function
http://en.wikipedia.org/wiki/Random_oracle_model
http://en.wikipedia.org/wiki/Trapdoor_permutation
http://en.wikipedia.org/wiki/Permutation

 ONLY FOR ARMIET STUDENTS……….

Used directly, this type of signature scheme is vulnerable to a key-only existential forgery

attack. To create a forgery, the attacker picks a random signature σ and uses the

verification procedure to determine the message m corresponding to that signature.[15] In

practice, however, this type of signature is not used directly, but rather, the message to

be signed is first hashed to produce a short digest that is then signed. This forgery

attack, then, only produces the hash function output that corresponds to σ, but not a

message that leads to that value, which does not lead to an attack. In the random oracle

model, this hash-then-sign form of signature is existentially unforgeable, even against

a chosen-plaintext attack. There are several reasons to sign such a hash (or message

digest) instead of the whole document.

 For efficiency: The signature will be much shorter and thus save time since hashing

is generally much faster than signing in practice.

 For compatibility: Messages are typically bit strings, but some signature schemes

operate on other domains (such as, in the case of RSA, numbers modulo a composite

number N). A hash function can be used to convert an arbitrary input into the proper

format.

 For integrity: Without the hash function, the text "to be signed" may have to be split

(separated) in blocks small enough for the signature scheme to act on them directly.

However, the receiver of the signed blocks is not able to recognize if all the blocks are

present and in the appropriate order.

http://en.wikipedia.org/wiki/Digital_signature#cite_note-15
http://en.wikipedia.org/wiki/Cryptographic_hash_function
http://en.wikipedia.org/wiki/Full_domain_hash
http://en.wikipedia.org/wiki/Chosen-plaintext_attack

 ONLY FOR ARMIET STUDENTS……….

Algorithm

With the above considerations, the algorithm below can be used for implementing public key

cryptography in Java.

1. Encrypt the message using a symmetric key.

2. Concatenate the symmetric key + Hash of symmetric key + Hash of message.

3. Encrypt the concatenated string using the receivers public key.

4. Sign the data to be transmitted (Encrypted symmetric key + Hash of the key + Hash of message).

5. Validate the Signature.

6. Decrypt the message using Receiver private key to get the symmetric key.

7. Validate the integrity of the key using the Hash of the key.

8. Decrypt the actual message using the symmetric key which has been decrypted and parsed and

checked for integrity.

9. Compute MessageDigest of data.

10. Validate if the Message Digest of the decrypted text matches the Message Digest of the Original

Message.

CONCLUSION:- Hence we have studied and successfully implemented Digital

signature scheme using RSA.

 ONLY FOR ARMIET STUDENTS……….

EXPERIMENT NO 3

AIM :- To Simulate the Buffer overflow attack.

THEORY:-

Use of the Stack

The stack is a region in a program's memory space that is only accessible from the top.

There are two operations, push and pop, to a stack. A push stores a new data item on top of

the stack, a pop removes the top item. Every process has its own memory space (at least in

a decent OS), among them a stack region and a heap region. The stack is used heavily to

store local variables and the return address of a function.

For example, assume that we have a function

void foo(const char* input) {

 char buf[10];

 printf("Hello World\n");

}

When this function is called from another function, for example main:

int main(int argc, char* argv[])

{

 foo(argv[1]);

 ONLY FOR ARMIET STUDENTS……….

 return 0;

}

then the following happens: The calling function pushes the return address, that is the

address of the return statement onto the stack. Then the called function pushes zeroes on

the stack to store its local variable. Since foo has a variable buf, this means there will be

space for 10 characters allocated. The stack thus will look like depicted in Figure 3.

Figure 3: The stack holds the return address, the arguments, and the local variables..

 ONLY FOR ARMIET STUDENTS……….

Figure 1: The push operation takes an item and puts it on the top of the stack.

Figure 2: The pop operation removes the top from the stack and makes it available to the

application.

This is a simple C-program. Function main uses the command line input. Recall that argc is

the number of arguments, including the call to the function itself. Thus, is we put

: stackoverrun Hello

 ONLY FOR ARMIET STUDENTS……….

then argc is two and argv[0] is "stackoverrun" and argv[1] is "Hello". The main function

calls function foo. foo gets the second word from the commandline as its input.

As we look at foo, foo prints first the stack. This is done with a printf statement. The

arguments to printf are taken directly from the stack. The "%p" format means that the

argument is printed out as a pointer.

The call to strcpy is the one that is dangerous. strcpy will just copy character for character

until it finds a "0" character in the source string. Since the argument we give to the call can

be much longer, this can mess up the stack. Unfortunately, commercial-grade software is

full of these calls without checking for the length of the input.

When the stack is messed up, the return address from foo will be overwritten. With other

words, instead of going back to the next instruction after foo in main (that would be the

return statement), the next instruction executed after foo finishes will be whatever is in the

stack location.

In this program, there is another function, called bar. The program logic bars bar from

running ever. However, by giving it the right input to main, we can get bar to run.

CONCLUSION:- Hence we have studied and successfully implemented To Simulate the

Buffer overflow attack.

 ONLY FOR ARMIET STUDENTS……….

PROGRAM:-

Buffer overflow attack:

/*

 StackOverrun.c

 This program shows an example of how a stack-based

 buffer overrun can be used to execute arbitrary code. Its

 objective is to find an input string that executes the function bar.

*/

#pragma check_stack(off)

#include <string.h>

#include <stdio.h>

void foo(const char* input)

{

 char buf[10];

 printf("My stack looks like:\n%p\n%p\n%p\n%p\n%p\n% p\n\n");

 strcpy(buf, input);

 printf("%s\n", buf);

 printf("Now the stack looks like:\n%p\n%p\n%p\n%p\n%p\n%p\n\n");

}

void bar(void)

{

 printf("Augh! I've been hacked!\n");

}

int main(int argc, char* argv[])

{

 //Blatant cheating to make life easier on myself

 ONLY FOR ARMIET STUDENTS……….

 printf("Address of foo = %p\n", foo);

 printf("Address of bar = %p\n", bar);

 if (argc != 2)

 {

 printf("Please supply a string as an argument!\n");

 return -1;

 }

foo(argv[1]);

 return 0;

}

 ONLY FOR ARMIET STUDENTS……….

Output:-

 ONLY FOR ARMIET STUDENTS……….

EXPERIMENT NO 4

AIM :- To Simulate the Salami attack.

THEORY:- A salami technique is an automated form of abuse involving Trojan

horses or secret execution of an unauthorized program that causes the unnoticed

or immaterial debiting of small amounts of assets from a large number of

sources or accounts. The name of this technique comes from the fact that small

slices of assets are taken without noticeably reducing the whole. Other methods

must be used to remove the acquired assets from the system. For example, in a

banking system, the demand deposit accounting system of programs for

checking accounts could be changed (using the Trojan horse method) to

randomly reduce each of a few hundred accounts by 10 cents or 15 cents by

transferring the money to a favored account, where it can be withdrawn through

authorized methods. No controls are violated because the money is not removed

from the system of accounts. Instead, small fractions of the funds are merely

rearranged, which the affected customers rarely notice. Many variations are

possible. The assets may be an inventory of products or services as well as

money. Few cases have been reported.

Salami Technique in Electronic Banking

The most typical scheme portrayed by a salami attack is that which involves an

automated modification to financial systems and their data. For example, the digits

representing currency on a bank's computer(s) could be altered so that values to the

right of the pennies field (< 0.01) are always rounded down (fair arithmetic routines

 ONLY FOR ARMIET STUDENTS……….

will calculate in both directions equally). Since all this rounding down produces excess

fractions of cents, they must be transferred elsewhere, and, carefully, so that no net

loss to the system of accounts becomes apparent. This is done by merely rearranging

the funds into a balance owned by the perpetrator. The final rewards could be very

attractive, provided the "slices" are taken 1 at frequent intervals throughout an

extended period of time and from a large number of accounts.

The essence of this mechanism is its resistance to detection. Account owners rarely

calculate their balances to the thousandths or ten-thousandths of a cent, and,

consequentially remain oblivious. Even if the discrepancies are noticed, most

individuals have better things to do (like preserve their pride) than complain about an

erroneous digit in some far off decimal place. The following (alleged) scenarios will

demonstrate that "slices" need not always be tiny to evade detection. In fact, they can

be rather large, as long as unsuspecting and/or ignorant victims are plentiful.

 A modified payroll program increased the federal withholding amounts by a few cents

per pay period for hundreds of employees. The excess payments were credited to the

perpetrator's withholding account, which, at income-tax time the following year,

yielded large refunds from the IRS.Over the course of 3 years, at least 47,000

customers were defrauded by a rental-car agency that overestimated (purposely) the

vehicles' gas tank capacity. Customers returning the cars without topping off the gas

were charged inflated amounts for the missing gasoline (which wasn't really missing).

Theft rates ranged from $2 to $15 per customer.

 ONLY FOR ARMIET STUDENTS……….

A Taco Bell drive-up window cash register, modified to internally ring each $2.99 item

as 1 cent, allowed the perpetrator to pocket the excess $2.98 each time. Fraudulent

computer chips in gasoline pumps cheated customers by overstating the amounts

pumped.

CONCLUSION:- Hence we have studied and successfully implemented the Salami attack.

 ONLY FOR ARMIET STUDENTS……….

EXPERIMENT NO 5

AIM :- To Design and implement a program for adding passwords to a file. The program

should be able to filter out weak passwords (based on dictionary words or variants) and

store the strong passwords by creating a hash of user ID and password.

THEORY:- Password strength is a measure of the effectiveness of a password in

resisting guessing and brute-force attacks. In its usual form, it estimates how many trials

an attacker who does not have direct access to the password would need, on average, to

guess it correctly. The strength of a password is a function of length, complexity, and

unpredictability.

Using strong passwords lowers overall risk of a security breach, but strong passwords do

not replace the need for other effective security controls. The effectiveness of a password

of a given strength is strongly determined by the design and implementation of

the factors (knowledge, ownership, inherence). The first factor is the main focus in this

article.

The rate at which an attacker can submit guessed passwords to the system is a key factor

in determining system security. Some systems impose a time-out of several seconds after

a small number (e.g. three) of failed password entry attempts. In the absence of other

vulnerabilities, such systems can be effectively secured with relatively simple passwords.

However the system must store information about the user passwords in some form and if

that information is stolen, say by breaching system security, the user passwords can be at

risk.

Password Creation

http://en.wikipedia.org/wiki/Password
http://en.wikipedia.org/wiki/Risk
http://en.wikipedia.org/wiki/Security_controls
http://en.wikipedia.org/wiki/Authentication#Factors_and_identity

 ONLY FOR ARMIET STUDENTS……….

Passwords are created either automatically (using randomizing equipment) or by a

human; the latter case is more common. While the strength of randomly chosen

passwords against a brute force attack can be calculated with precision, determining the

strength of human-generated passwords is challenging.

Typically, humans are asked to choose a password, sometimes guided by suggestions or

restricted by a set of rules, when creating a new account for a computer system or

Internet Web site. Only rough estimates of strength are possible, since humans tend to

follow patterns in such tasks, and those patterns can usually assist an attacker. In

addition, lists of commonly chosen passwords are widely available for use by password

guessing programs. Such lists include the numerous online dictionaries for various human

languages, along with other common passwords. All items in such lists are considered

weak, as are passwords that are simple modifications of them. For some decades,

investigations of passwords on multi-user computer systems have shown that 40% or

more are readily guessed using only computer programs, and more can be found when

information about a particular user is taken into account during the attack.

Examples of weak passwords

As with any security measure, passwords vary in effectiveness (i.e., strength); some are

weaker than others. For example, the difference in weakness between a dictionary word

and a word with obfuscation (i.e., letters in the password are substituted by, say, numbers

— a common approach) may cost a password cracking device a few more seconds; this

adds little strength. The examples below illustrate various ways weak passwords might be

constructed, all of which are based on simple patterns which result in extremely low

entropy, allowing them to be tested automatically at high speeds:

 ONLY FOR ARMIET STUDENTS……….

 Default passwords (as supplied by the system vendor and meant to be changed at

installation time): password, default, admin, guest, etc. Lists of default passwords are

widely available on the internet.

 Dictionary words: chameleon, RedSox, sandbags, bunnyhop!, IntenseCrabtree, etc.,

including words in non-English dictionaries.

 Words with numbers appended: password1, deer2000, john1234, etc., can be easily tested

automatically with little lost time.

 Words with simple obfuscation: p@ssw0rd, l33th4x0r, g0ldf1sh, etc., can be tested

automatically with little additional effort. For example a domain administrator password

compromised in the DigiNotar attack was reportedly Pr0d@dm1n.

 Doubled words: crabcrab, stopstop, treetree, passpass, etc.

 Common sequences from a keyboard row: qwerty, 12345, asdfgh, fred, etc.

 Numeric sequences based on well known numbers such as 911 314159... , or 27182...

etc.

 Identifiers: jsmith123, 1/1/1970, 555–1234, one's username, etc.

 Anything personally related to an individual: license plate number, Social Security

number, current or past telephone numbers, student ID, current address, previous

addresses, birthday, sports team, relative's or pet's names/nicknames/birthdays/initials,

etc., can easily be tested automatically after a simple investigation of person's details.

There are many other ways a password can be weak, corresponding to the strengths of

various attack schemes; the core principle is that a password should have high entropy

(usually taken to be equivalent to randomness) and not be readily derivable by any

"clever" pattern, nor should passwords be mixed with information identifying the user.

http://en.wikipedia.org/wiki/Default_password
http://en.wikipedia.org/wiki/DigiNotar
http://en.wikipedia.org/wiki/Spaceballs#Plot

 ONLY FOR ARMIET STUDENTS……….

On-line services often provide a restore password function that a hacker can figure out

and by doing so bypass a password. Choosing hard-to-guess restore password questions

can further secure the password.

CONCLUSION:- Hence we have studied and successfully implemented a program for

adding passwords to a file. The program should be able to filter out weak passwords

(based on dictionary words or variants) and store the strong passwords by creating a hash

of user ID and password.

.

 ONLY FOR ARMIET STUDENTS……….

PROGRAM:-

<?php

$pwd = $_POST['pwd'];

if(strlen($pwd) < 8) {

 $error .= "Password too short! ";

}

if(strlen($pwd) > 20) {

 $error .= "Password too long! ";

}

if(strlen($pwd) < 8) {

 $error .= "Password too short! ";

}

if(!preg_match("#[0-9]+#", $pwd)) {

 $error .= "Password must include at least one number! ";

}

if(!preg_match("#[a-z]+#", $pwd)) {

 $error .= "Password must include at least one letter! ";

}

if(!preg_match("#[A-Z]+#", $pwd)) {

 $error .= "Password must include at least one CAPS! ";

}

if(!preg_match("#\W+#", $pwd)) {

 $error .= "Password must include at least one symbol! ";

}

if($error){

 echo "Password validation failure(your choise is weak): $error";

} else {

 echo "Your password is strong.";

}

 ONLY FOR ARMIET STUDENTS……….

EXPERIMENT NO 6

AIM :- To Study of a packet sniffer like wireshark, or tcpdump. Use this tool to capture

and analyze data in packets.

THEORY:- Wireshark is a free and open-source packet analyzer. It is used

for network troubleshooting,analysis,softwareand communications protocol development,

and education. Originally named Ethereal, in May 2006 the project was renamed

Wireshark due to trademark issues.

Wireshark is cross-platform, using the GTK+ widget toolkit in current releases, and Qt in

the development version, to implement its user interface, and using pcap to capture

packets; it runs on GNU/Linux, OS X, BSD, Solaris, some other Unix-like operating

systems, andMicrosoft Windows. There is also a terminal-based (non-GUI) version called

TShark. Wireshark, and the other programs distributed with it such as TShark, are free

software, released under the terms of the GNU General Public License.

Functionality

Wireshark is very similar to tcpdump, but has a graphical front-end, plus some integrated

sorting and filtering options.

Wireshark allows the user to put network interface controllers that support promiscuous

mode into that mode, in order to see all traffic visible on that interface, not just traffic

addressed to one of the interface's configured addresses and broadcast/multicast traffic.

However, when capturing with a packet analyzer in promiscuous mode on a port on

a network switch, not all of the traffic travelling through the switch will necessarily be

sent to the port on which the capture is being done, so capturing in promiscuous mode

will not necessarily be sufficient to see all traffic on the network. Port mirroring or

various network taps extend capture to any point on the network. Simple passive taps are

extremely resistant to tampering.

On Linux, BSD, and OS X, with libpcap 1.0.0 or later, Wireshark 1.4 and later can also

put wireless network interface controllers into monitor mode.

http://en.wikipedia.org/wiki/Free_and_open_source_software
http://en.wikipedia.org/wiki/Packet_analyzer
http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Communications_protocol
http://en.wikipedia.org/wiki/Cross-platform
http://en.wikipedia.org/wiki/GTK%2B
http://en.wikipedia.org/wiki/Widget_toolkit
http://en.wikipedia.org/wiki/Qt_(software)
http://en.wikipedia.org/wiki/Pcap
http://en.wikipedia.org/wiki/GNU/Linux
http://en.wikipedia.org/wiki/OS_X
http://en.wikipedia.org/wiki/BSD
http://en.wikipedia.org/wiki/Solaris_(operating_system)
http://en.wikipedia.org/wiki/Unix-like
http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/Free_software
http://en.wikipedia.org/wiki/Free_software
http://en.wikipedia.org/wiki/Free_software
http://en.wikipedia.org/wiki/GNU_General_Public_License
http://en.wikipedia.org/wiki/Tcpdump
http://en.wikipedia.org/wiki/Graphical_user_interface
http://en.wikipedia.org/wiki/Front-end_and_back-end
http://en.wikipedia.org/wiki/Network_interface_controller
http://en.wikipedia.org/wiki/Promiscuous_mode
http://en.wikipedia.org/wiki/Promiscuous_mode
http://en.wikipedia.org/wiki/Promiscuous_mode
http://en.wikipedia.org/wiki/Packet_analyzer
http://en.wikipedia.org/wiki/Network_switch
http://en.wikipedia.org/wiki/Port_mirroring
http://en.wikipedia.org/wiki/Network_tap
http://en.wikipedia.org/wiki/Pcap
http://en.wikipedia.org/wiki/Wireless_network_interface_controller
http://en.wikipedia.org/wiki/Monitor_mode

 ONLY FOR ARMIET STUDENTS……….

If a remote machine captures packets and sends the captured packets to a machine

running Wireshark using the TZSP protocol or the protocol used by OmniPeek,

Wireshark will dissect those packets, thus allowing it to analyze packets captured on a

remote machine at the time that they're captured.

History

In the late 1990s, Gerald Combs, a computer science graduate of the University of

Missouri–Kansas City, was working for a small Internet service provider. The

commercial protocol analysis products at the time were priced around $1500 and did not

run on the company's primary platforms (Solaris and Linux), so Gerald began writing

Ethereal and released the first version around 1998. The Ethereal trademark is owned by

Network Integration Services.

In May 2006, Combs accepted a job with CACE Technologies. Combs still held

copyright on most of Ethereal's source code (and the rest was re-distributable under the

GNU GPL), so he used the contents of the Ethereal Subversion repository as the basis for

the Wireshark repository. However, he did not own the Ethereal trademark, so he

changed the name to Wireshark. In 2010 Riverbed Technology purchased CACE and

took over as the primary sponsor of Wireshark. Ethereal development has ceased, and an

Ethereal security advisory recommended switching to Wireshark.

Wireshark has won several industry awards over the

years,[including eWeek, InfoWorld, and PC Magazine. It is also the top-rated packet

sniffer in the Insecure.Org network security tools survey and was

the SourceForge Project of the Month in August 2010.

Combs continues to maintain the overall code of Wireshark and issue releases of new

versions of the software. The product website lists over 600 additional contributing

authors.

Features

Wireshark is software that "understands" the structure (encapsulation) of different

networking protocols. It can parse and display the fields, along with their meanings as

http://en.wikipedia.org/wiki/TZSP
http://en.wikipedia.org/wiki/OmniPeek
http://en.wikipedia.org/wiki/University_of_Missouri%E2%80%93Kansas_City
http://en.wikipedia.org/wiki/University_of_Missouri%E2%80%93Kansas_City
http://en.wikipedia.org/wiki/University_of_Missouri%E2%80%93Kansas_City
http://en.wikipedia.org/wiki/Internet_service_provider
http://en.wikipedia.org/wiki/Trademark
http://en.wikipedia.org/wiki/Subversion_(software)
http://en.wikipedia.org/wiki/Riverbed_Technology
http://en.wikipedia.org/wiki/EWeek
http://en.wikipedia.org/wiki/InfoWorld
http://en.wikipedia.org/wiki/PC_Magazine
http://en.wikipedia.org/wiki/SourceForge
http://en.wikipedia.org/wiki/Encapsulation_(networking)

 ONLY FOR ARMIET STUDENTS……….

specified by different networking protocols. Wireshark uses pcap to capture packets, so it

can only capture packets on the types of networks that pcap supports.

 Data can be captured "from the wire" from a live network connection or read from a file

of already-captured packets.

 Live data can be read from a number of types of network, including Ethernet, IEEE

802.11, PPP, and loopback.

 Captured network data can be browsed via a GUI, or via the terminal (command line)

version of the utility, TShark.

 Captured files can be programmatically edited or converted via command-line switches

to the "editcap" program.

 Data display can be refined using a display filter.

 Plug-ins can be created for dissecting new protocols.

 VoIP calls in the captured traffic can be detected. If encoded in a compatible encoding,

the media flow can even be played.

 Raw USB traffic can be captured.

Wireshark's native network trace file format is the libpcap format supported by libpcap

and WinPcap, so it can exchange captured network traces with other applications that use

the same format, including tcpdump and CA NetMaster. It can also read captures from

other network analyzers, such as snoop, Network General's Sniffer, and Microsoft

Network Monitor.

Security

Capturing raw network traffic from an interface requires elevated privileges on some

platforms. For this reason, older versions of Ethereal/Wireshark and tethereal/TShark

often ran withsuperuser privileges. Taking into account the huge number of protocol

dissectors that are called when traffic is captured, this can pose a serious security risk

given the possibility of a bug in a dissector. Due to the rather large number of

vulnerabilities in the past (of which many have allowed remote code execution) and

http://en.wikipedia.org/wiki/Pcap
http://en.wikipedia.org/wiki/Ethernet
http://en.wikipedia.org/wiki/IEEE_802.11
http://en.wikipedia.org/wiki/IEEE_802.11
http://en.wikipedia.org/wiki/IEEE_802.11
http://en.wikipedia.org/wiki/Point-to-Point_Protocol
http://en.wikipedia.org/wiki/Loopback
http://en.wikipedia.org/wiki/Graphical_user_interface
http://en.wikipedia.org/wiki/Command_line_interface
http://en.wikipedia.org/wiki/Plug-in_(computing)
http://en.wikipedia.org/wiki/Voice_over_IP
http://en.wikipedia.org/wiki/Universal_Serial_Bus
http://en.wikipedia.org/wiki/Pcap
http://en.wikipedia.org/wiki/Pcap
http://en.wikipedia.org/wiki/Pcap
http://en.wikipedia.org/wiki/Tcpdump
http://en.wikipedia.org/wiki/CA,_Inc.
http://en.wikipedia.org/w/index.php?title=NetMaster&action=edit&redlink=1
http://en.wikipedia.org/wiki/Snoop_(software)
http://en.wikipedia.org/wiki/NetScout_Systems,_Inc.
http://en.wikipedia.org/wiki/Microsoft_Network_Monitor
http://en.wikipedia.org/wiki/Microsoft_Network_Monitor
http://en.wikipedia.org/wiki/Microsoft_Network_Monitor
http://en.wikipedia.org/wiki/Superuser

 ONLY FOR ARMIET STUDENTS……….

developers' doubts for better future development, OpenBSDremoved Ethereal from its

ports tree prior to OpenBSD 3.6.

Elevated privileges are not needed for all operations. For example, an alternative is to

run tcpdump or the dumpcap utility that comes with Wireshark with superuser privileges

to capture packets into a file, and later analyze the packets by running Wireshark with

restricted privileges. To emulate near realtime analysis, each captured file may be merged

by mergecap into growing file processed by Wireshark. On wireless networks, it is

possible to use the Aircrack wireless security tools to capture IEEE 802.11 frames and

read the resulting dump files with Wireshark.

As of Wireshark 0.99.7, Wireshark and TShark run dumpcap to perform traffic capture.

On platforms where special privileges are needed to capture traffic, only dumpcap needs

to be run with those special privileges: neither Wireshark nor TShark need to or should

be run with special privileges.

CONCLUSION:- Hence we have studied and successfully implemented of a packet

sniffer like wireshark, or tcpdump. Use this tool to capture and analyze data in packets.

http://en.wikipedia.org/wiki/OpenBSD
http://en.wikipedia.org/wiki/Tcpdump
http://en.wikipedia.org/wiki/Aircrack
http://en.wikipedia.org/wiki/IEEE_802.11

 ONLY FOR ARMIET STUDENTS……….

SNAPSHOTS:-

 ONLY FOR ARMIET STUDENTS……….

 ONLY FOR ARMIET STUDENTS……….

EXPERIMENT NO 7

AIM :- To Study and install nmap. Use it with different options to scan open ports,

perform OS fingerprinting, do a ping scan, tcp port scan, udp port scan, etc.

THEORY:- Nmap (Network Mapper) is a security scanner originally written by Gordon

Lyon (also known by his pseudonym Fyodor Vaskovich) used to

discover hosts and services on a computer network, thus creating a "map" of the network.

To accomplish its goal, Nmap sends specially craftedpackets to the target host and then

analyzes the responses.

The software provides a number of features for probing computer networks, including

host discovery and service and operating systemdetection. These features are extensible

by scripts that provide more advanced service detection, vulnerability detection, and

other features. Nmap is also capable of adapting to network conditions

including latency and congestion during a scan. Nmap is under development and

refinement by its user community.

Nmap was originally a Linux-only utility, but it was ported to Microsoft

Windows, Solaris, HP-UX, BSD variants (including Mac OS X), AmigaOS, and SGI

IRIX. Linux is the most popular platform, followed closely by Windows.

Graphical Interfaces

NmapFE, originally written by Zach Smith, was Nmap's official GUI for Nmap versions

2.2 to 4.22. For Nmap 4.50 (originally in the 4.22SOC development series) NmapFE was

replaced with Zenmap, a new official graphical user interface based on UMIT, developed

by Adriano Monteiro Marques.

http://en.wikipedia.org/wiki/Network_scanner
http://en.wikipedia.org/wiki/Gordon_Lyon
http://en.wikipedia.org/wiki/Gordon_Lyon
http://en.wikipedia.org/wiki/Gordon_Lyon
http://en.wikipedia.org/wiki/Host_(network)
http://en.wikipedia.org/wiki/Web_service
http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Network_packet
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Network_latency
http://en.wikipedia.org/wiki/Network_congestion
http://en.wikipedia.org/wiki/Community
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/Solaris_Operating_System
http://en.wikipedia.org/wiki/HP-UX
http://en.wikipedia.org/wiki/BSD
http://en.wikipedia.org/wiki/Mac_OS_X
http://en.wikipedia.org/wiki/AmigaOS
http://en.wikipedia.org/wiki/SGI_IRIX
http://en.wikipedia.org/wiki/SGI_IRIX
http://en.wikipedia.org/wiki/SGI_IRIX
http://en.wikipedia.org/wiki/GUI

 ONLY FOR ARMIET STUDENTS……….

Various web-based interfaces allow controlling Nmap remotely from a web browser.

These include LOCALSCAN, nmap-web, and Nmap-CGI.

Microsoft Windows specific GUIs exist, including NMapWin, which has not been

updated since June 2003 (v1.4.0), and NMapW by Syhunt.

Zenmap, showing results for a port scan against Wikipedia

http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/Syhunt

 ONLY FOR ARMIET STUDENTS……….

NmapFE, showing results for a port scan against Wikipedia

 ONLY FOR ARMIET STUDENTS……….

XNmap, a Mac OS X GUI

 ONLY FOR ARMIET STUDENTS……….

Reporting Results

Nmap provides four possible output formats. All but the interactive output is saved to a

file. Nmap output can be manipulated by text processing software, enabling the user to

create customized reports.

Interactive

presented and updated real time when a user runs Nmap from the command line. Various

options can be entered during the scan to facilitate monitoring.

XML

a format that can be further processed by XML tools. It can be converted into

a HTML report using XSLT.

Grepable

output that is tailored to line-oriented processing tools such as grep, sed or awk.

Normal

the output as seen while running Nmap from the command line, but saved to a file.

Script kiddie

meant to be an amusing way to format the interactive output replacing letters with their

visually alike number representations. For example, Interesting ports becomes

 Int3rest1ng p0rtz.

CONCLUSION:- Hence we have studied and successfully Used NMAP.

http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/HTML
http://en.wikipedia.org/wiki/XSLT
http://en.wikipedia.org/wiki/Grep
http://en.wikipedia.org/wiki/Sed
http://en.wikipedia.org/wiki/Awk
http://en.wikipedia.org/wiki/Script_kiddie
http://en.wikipedia.org/wiki/L33t

 ONLY FOR ARMIET STUDENTS……….

EXPERIMENT NO 8

AIM :- To Detect ARP spoofing using open source tool ARPWATCH.

THEORY:- arpwatch is a computer software tool for monitoring Address Resolution

Protocol traffic on a computer network. It generates a log of observed pairing of IP

addresses with MAC addresses along with a timestamp when the pairing appeared on the

network. It also has the option of sending an email to an administrator when a pairing

changes or is added.

Network administrators monitor ARP activity to detect ARP spoofing.

arpwatch was developed by Lawrence Berkeley National Laboratory, Network Research

Group, as open-source software and is released under the BSD license.

http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Address_Resolution_Protocol
http://en.wikipedia.org/wiki/Address_Resolution_Protocol
http://en.wikipedia.org/wiki/Address_Resolution_Protocol
http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/IP_address
http://en.wikipedia.org/wiki/IP_address
http://en.wikipedia.org/wiki/IP_address
http://en.wikipedia.org/wiki/ARP_spoofing
http://en.wikipedia.org/wiki/Lawrence_Berkeley_National_Laboratory
http://en.wikipedia.org/wiki/Open-source
http://en.wikipedia.org/wiki/BSD_license
http://binaryplant.com/screens/arp-events1.gif

 ONLY FOR ARMIET STUDENTS……….

 CONCLUSION:- Hence we have studied and successfully Used ARPWATCH.

 ONLY FOR ARMIET STUDENTS……….

EXPERIMENT NO 9

AIM :- To Install an IDS (e.g. SNORT) and study the logs..

THEORY:- An intrusion detection system (IDS) is a device or software application that

monitors network or system activities for malicious activities or policy violations and

produces reports to a management station. IDS come in a variety of ―flavors‖ and

approach the goal of detecting suspicious traffic in different ways. There are network

based (NIDS) and host based (HIDS) intrusion detection systems. Some systems may

attempt to stop an intrusion attempt but this is neither required nor expected of a

monitoring system. Intrusion detection and prevention systems (IDPS) are primarily

focused on identifying possible incidents, logging information about them, and reporting

attempts. In addition, organizations use IDPSes for other purposes, such as identifying

problems with security policies, documenting existing threats and deterring individuals

from violating security policies. IDPSes have become a necessary addition to the security

infrastructure of nearly every organization.

IDPSes typically record information related to observed events, notify security

administrators of important observed events and produce reports. Many IDPSes can also

respond to a detected threat by attempting to prevent it from succeeding. They use several

response techniques, which involve the IDPS stopping the attack itself, changing the

security environment (e.g. reconfiguring a firewall) or changing the attack's content.

HIDS & NIDS

Intrusion detection systems are of two main types, network based (NIDS) and host based

(HIDS) intrusion detection systems.

http://en.wikipedia.org/wiki/Software_application

 ONLY FOR ARMIET STUDENTS……….

Network Intrusion Detection Systems

Network intrusion detection systems NIDS are placed at a strategic point or points within

the network to monitor traffic to and from all devices on the network. It performs an

analysis for a passing traffic on the entire subnet, works in a promiscuous mode, and

matches the traffic that is passed on the subnets to the library of known attacks. Once the

attack is identified, or abnormal behavior is sensed, the alert can be sent to the

administrator. Example of the NIDS would be installing it on the subnet where firewalls

are located in order to see if someone is trying to break into the firewall. Ideally one

would scan all inbound and outbound traffic, however doing so might create a bottleneck

that would impair the overall speed of the network.

Host Intrusion Detection Systems

Host intrusion detection systems run on individual hosts or devices on the network. A

HIDS monitors the inbound and outbound packets from the device only and will alert the

user or administrator if suspicious activity is detected. It takes a snapshot of existing

system files and matches it to the previous snapshot. If the critical system files were

modified or deleted, the alert is sent to the administrator to investigate. An example of

HIDS usage can be seen on mission critical machines, which are not expected to change

their configurations.

Intrusion detection systems can also be system-specific using custom tools

and honeypots.

Passive and active systems

http://en.wikipedia.org/wiki/Honeypot_(computing)

 ONLY FOR ARMIET STUDENTS……….

In a passive system, the intrusion detection system (IDS) sensor detects a potential

security breach, logs the information and signals an alert on the console or owner.[4] In

a reactive system, also known as an intrusion prevention system (IPS), the IPS auto-

responds to the suspicious activity by resetting the connection or by reprogramming the

firewall to block network traffic from the suspected malicious source. The term IDPS is

commonly used where this can happen automatically or at the command of an operator;

systems that both "detect (alert)" and "prevent".

Comparision with Firewalls

Though they both relate to network security, an intrusion detection system (IDS) differs

from a firewall in that a firewall looks outwardly for intrusions in order to stop them from

happening. Firewalls limit access between networks to prevent intrusion and do not

signal an attack from inside the network. An IDS evaluates a suspected intrusion once it

has taken place and signals an alarm. An IDS also watches for attacks that originate from

within a system. This is traditionally achieved by examining network communications,

identifying heuristics and patterns (often known as signatures) of common computer

attacks, and taking action to alert operators. A system that terminates connections is

called an intrusion prevention system, and is another form of an application layer

firewall.

http://en.wikipedia.org/wiki/Intrusion_detection_system#cite_note-4
http://en.wikipedia.org/wiki/Intrusion_prevention_system
http://en.wikipedia.org/wiki/Intrusion_Detection_and_Prevention_Systems
http://en.wikipedia.org/wiki/Firewall_(computing)
http://en.wikipedia.org/wiki/Intrusion_prevention_system
http://en.wikipedia.org/wiki/Application_layer_firewall
http://en.wikipedia.org/wiki/Application_layer_firewall
http://en.wikipedia.org/wiki/Application_layer_firewall

 ONLY FOR ARMIET STUDENTS……….

 ONLY FOR ARMIET STUDENTS……….

Fig:-SNORT Alert Manager

 ONLY FOR ARMIET STUDENTS……….

 CONCLUSION:- Hence we have studied and successfully Worked on SNORT.

 ONLY FOR ARMIET STUDENTS……….

EXPERIMENT NO 10

AIM :- To study Use of iptables in linux to create firewalls.

THEORY:- Setting up a good firewall is an essential step to take in securing any modern

operating system. Most Linux distributions ship with a few different firewall tools that

we can use to configure our firewalls. In this guide, we'll be covering the iptables

firewall.

Iptables is a standard firewall included in most Linux distributions by default (a modern

variant called nftables will begin to replace it). It is actually a front end to the kernel-level

netfilter hooks that can manipulate the Linux network stack. It works by matching each

packet that crosses the networking interface against a set of rules to decide what to do.

In the previous guide, we learned how iptables rules work to block unwanted traffic. In

this guide, we'll move on to a practical example to demonstrate how to create a basic rule

set for an Ubuntu 14.04 server.

Basic iptables Commands

Now that you have a good understanding of iptables concepts, we should cover the basic

commands that will be used to form complex rule sets and to manage the iptables

interface in general.

First, you should be aware that iptables commands must be run with root privileges. This

means you need to log in as root, use su or sudo -i to gain a root shell, or precede all

commands with sudo. We are going to use sudo in this guide since that is the preferred

method on an Ubuntu system.

A good starting point is to list the current rules that are configured for iptables. You can

do that with the -L flag:

https://www.digitalocean.com/community/articles/how-the-iptables-firewall-works

 ONLY FOR ARMIET STUDENTS……….

sudo iptables -L

Chain INPUT (policy ACCEPT)

target prot opt source destination

Chain FORWARD (policy ACCEPT)

target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

As you can see, we have our three default chains (INPUT,OUTPUT, and FORWARD).

We also can see each chain's default policy (each chain has ACCEPT as its default

policy). We also see some column headers, but we don't see any actual rules. This is

because Ubuntu doesn't ship with a default rule set.

We can see the output in a format that reflects the commands necessary to enable each

rule and policy by instead using the -S flag:

sudo iptables -S

-P INPUT ACCEPT

-P FORWARD ACCEPT

-P OUTPUT ACCEPT

To replicate the configuration, we'd just need to type sudo iptables followed by each of

the lines in the output. (Depending on the configuration, it may actually slightly more

complicated if we are connected remotely so that we don't institute a default drop policy

before the rules are in place to catch and allow our current connection.)

 ONLY FOR ARMIET STUDENTS……….

If you do have rules in place and wish to scrap them and start over, you can flush the

current rules by typing:

sudo iptables -F

Once again, the default policy is important here, because, while all of the rules are

deleted from your chains, the default policy will not change with this command. That

means that if you are connected remotely, you should ensure that the default policy on

your INPUT and OUTPUT chains are set to ACCEPT prior to flushing your rules. You

can do this by typing:

sudo iptables -P INPUT ACCEPT

sudo iptables -P OUTPUT ACCEPT

sudo iptables -F

You can then change the default drop policy back to DROP after you've established rules

that explicitly allow your connection. We'll go over how to do that in a moment.

Make your First Rule

We're going to start to build our firewall policies. As we said above, we're going to be

working with the INPUT chain since that is the funnel that incoming traffic will be sent

through. We are going to start with the rule that we've talked about a bit above: the rule

that explicitly accepts your current SSH connection.

The full rule we need is this:

sudo iptables -A INPUT -m conntrack --ctstate ESTABLISHED,RELATED -j ACCEPT

This may look incredibly complicated, but most of it will make sense when we go over

the components:

 ONLY FOR ARMIET STUDENTS……….

 -A INPUT: The -A flag appends a rule to the end of a chain. This is the portion of the

command that tells iptables that we wish to add a new rule, that we want that rule added

to the end of the chain, and that the chain we want to operate on is the INPUT chain.

 -m conntrack: iptables has a set of core functionality, but also has a set of extensions or

modules that provide extra capabilities.

In this portion of the command, we're stating that we wish to have access to the

functionality provided by the conntrack module. This module gives access to commands

that can be used to make decisions based on the packet's relationship to previous

connections.

* --ctstate: This is one of the commands made available by calling the conntrack module.

This command allows us to match packets based on how they are related to packets we've

seen before.

We pass it the value of ESTABLISHED to allow packets that are part of an existing

connection. We pass it the value of RELATED to allow packets that are associated with

an established connection. This is the portion of the rule that matches our current SSH

session.

* -j ACCEPT: This specifies the target of matching packets. Here, we tell iptables that

packets that match the preceding criteria should be accepted and allowed through.

We put this rule at the beginning because we want to make sure the connections we are

already using are matched, accepted, and pulled out of the chain before reaching any

DROP rules.

We can see the changes if we list the rules:

sudo iptables -L

Chain INPUT (policy ACCEPT)

 ONLY FOR ARMIET STUDENTS……….

target prot opt source destination

ACCEPT all -- anywhere anywhere ctstate

RELATED,ESTABLISHED

Chain FORWARD (policy ACCEPT)

target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

Now that you know the general syntax, let's continue by adding some more cases where

we want to accept the connection.

Accept Other Necessary Connections

We have told iptables to keep open any connections that are already open and to allow

new connections related to those connections. However, we need to create some rules to

establish when we want to accept new connections that don't meet those criteria.

We want to keep two ports open specifically. We want to keep our SSH port open (we're

going to assume in this guide that this is the default 22. If you've changed this in your

SSH configuration, modify your value here). We are also going to assume that this

computer is running a web server on the default port 80. If this is not the case for you,

you don't have to add that rule.

The two lines we're going to use to add these rules are:

sudo iptables -A INPUT -p tcp --dport 22 -j ACCEPT

sudo iptables -A INPUT -p tcp --dport 80 -j ACCEPT

 ONLY FOR ARMIET STUDENTS……….

As you can see, these are very similar to our first rule, but perhaps more simple. The new

options are:

 -p tcp: This option matches packets if the protocol being used is TCP. This is a

connection-based protocol that will be used by most applications because it allows for

reliable communication.

 --dport: This option is available if the -p tcp flag is given. It gives a further requirement

of matching the destination port for the matching packet. The first rule matches for TCP

packets destined for port 22, while the second rule matches TCP traffic pointed towards

port 80.

There is one more accept rule that we need to ensure that our server can function

correctly. Often, services on the computer communicate with each other by sending

network packets to each other. They do this by utilizing a pseudo network interface called

the loopback device, which directs traffic back to itself rather than to other computers.

So if one service wants to communicate with another service that is listening for

connections on port 4555, it can send a packet to port 4555 of the loopback device. We

want this type of behavior to be allowed, because it is essential for the correct operation

of many programs.

The rule we need to add is this:

sudo iptables -I INPUT 1 -i lo -j ACCEPT

This looks a bit different than our other commands. Let's go over what it is doing:

 -I INPUT 1: The -I flag tells iptables to insert a rule. This is different than the -A flag

which appends a rule to the end. The -I flag takes a chain and the rule position where you

want to insert the new rule.

 ONLY FOR ARMIET STUDENTS……….

In this case, we're adding this rule as the very first rule of the INPUT chain. This will

bump the rest of the rules down. We want this at the top because it is fundamental and

should not be affected by subsequent rules.

* -i lo: This component of the rule matches if the interface that the packet is using is the

"lo" interface. The "lo" interface is another name for the loopback device. This means

that any packet using that interface to communicate (packets generated on our server, for

our server) should be accepted.

To see our current rules, we should use the -S flag. This is because the -L flag doesn't

include some information, like the interface that a rule is tied to, which is an important

part of the rule we just added:

sudo iptables -S

-P INPUT ACCEPT

-P FORWARD ACCEPT

-P OUTPUT ACCEPT

-A INPUT -i lo -j ACCEPT

-A INPUT -m conntrack --ctstate RELATED,ESTABLISHED -j ACCEPT

-A INPUT -p tcp -m tcp --dport 22 -j ACCEPT

-A INPUT -p tcp -m tcp --dport 80 -j ACCEPT

Implementing a Drop Rule

We now have four separate rules that explicitly accept packets based on certain criteria.

However, our firewall currently is not blocking anything.

If a packet enters the INPUT chain and doesn't match one of the four rules that we made,

it is being passed to our default policy, which is to accept the packet anyways. We need

to change this.

 ONLY FOR ARMIET STUDENTS……….

There are two different ways that we can do this, with some pretty important differences.

The first way we could do this is to modify the default policy of our INPUT chain. We

can do this by typing:

sudo iptables -P INPUT DROP

This will catch any packets that fall through our INPUT chain, and drop them. This is

what we call a default drop policy. One of the implications of this type of a design is that

it falls back on dropping packets if the rules are flushed.

This may be more secure, but also can have serious consequences if you don't have

another way of accessing your server. With DigitalOcean, you can log in through our web

console to get access to your server if this happens. The web console acts as a virtual

local connection, so iptables rules will not affect it.

You may like your server to automatically drop all connections in the event that the rules

are dumped. This would prevent your server from being left wide open. This also means

that you can easily append rules to the bottom of the chain easily while still dropping

packets as you'd like.

The alternative approach is to keep the default policy for the chain as accept and add a

rule that drops every remaining packet to the bottom of the chain itself.

If you changed the default policy for the INPUT chain above, you can set it back to

follow along by typing:

sudo iptables -P INPUT ACCEPT

Now, you can add a rule to the bottom of the chain that will drop any remaining packets:

sudo iptables -A INPUT -j DROP

 ONLY FOR ARMIET STUDENTS……….

The result under normal operating conditions is exactly the same as a default drop policy.

This rule works by matching every remaining packet that reaches it. This prevents a

packet from ever dropping all of the way through the chain to reach the default policy.

Basically, this is used to keep the default policy to accept traffic. That way, if there are

any problems and the rules are flushed, you will still be able to access the machine over

the network. This is a way of implementing a default action without altering the policy

that will be applied to an empty chain.

Of course, this also means that any rule that any additional rule that you wish to add to

the end of the chain will have to be added before the drop rule. You can do this either by

temporarily removing the drop rule:

sudo iptables -D INPUT -j DROP

sudo iptables -A INPUT new_rule_here

sudo iptables -A INPUT -j DROP

Or, you can insert rules that you need at the end of the chain (but prior to the drop) by

specifying the line number. To insert a rule at line number 4, you could type:

sudo iptables -I INPUT 4 new_rule_here

If you are having trouble knowing which line number each rule is, you can tell iptables to

number the rules by typing:

sudo iptables -L --line-numbers

Chain INPUT (policy DROP)

num target prot opt source destination

1 ACCEPT all -- anywhere anywhere

2 ACCEPT all -- anywhere anywhere ctstate

RELATED,ESTABLISHED

 ONLY FOR ARMIET STUDENTS……….

3 ACCEPT tcp -- anywhere anywhere tcp dpt:ssh

4 ACCEPT tcp -- anywhere anywhere tcp dpt:http

Chain FORWARD (policy ACCEPT)

num target prot opt source destination

Chain OUTPUT (policy ACCEPT)

num target prot opt source destination

This can be helpful to make sure you are adding your rule at the appropriate position.

Saving your iptables Configuration

By default, the rules that you add to iptables are ephemeral. This means that when you

restart your server, your iptables rules will be gone.

This is actually a feature for some user because it gives them an avenue to get back in if

they have accidentally locked themselves out of the server. However, most users will

want a way to automatically save the rules you have created and to load them when the

server starts.

There are a few ways to do this, but the easiest way is with the iptables-

persistent package. You can download this from Ubuntu's default repositories:

sudo apt-get update

sudo apt-get install iptables-persistent

During the installation, you will be asked if you would like to save your current rules to

be automatically loaded. If you are happy with your current configuration (and you have

tested your ability to create independent SSH connections, you can select to save your

current rules.

 ONLY FOR ARMIET STUDENTS……….

It will also ask you if you want to save the IPv6 rules that you have configured. These are

configured through a separate utility called ip6tables which controls the flow of IPv6

packets in almost the same way.

Once the installation is complete, you will have a new service called iptables-

persistent that is configured to run at boot. This service will load in your rules and apply

them when the server is started.

CONCLUSION:- Hence we have studied and successfully Implemented Firewall With

the help of Iptables.

 ONLY FOR ARMIET STUDENTS……….

EXPERIMENT NO 11

AIM :- To Implement a simple SQL injection attack.

THEORY:- SQL injection is a code injection technique, used to attack data-driven

applications, in which malicious SQL statements are inserted into an entry field for

execution (e.g. to dump the database contents to the attacker).SQL injection must exploit

a security vulnerability in an application's software, for example, when user input is

either incorrectly filtered for string literalescape characters embedded in SQL statements

or user input is not strongly typed and unexpectedly executed. SQL injection is mostly

known as an attack vector for websites but can be used to attack any type of SQL

database.

In a 2012 study, security company Imperva observed that the average web application

received 4 attack campaigns per month, and retailers received twice as many attacks as

other industries.

http://en.wikipedia.org/wiki/Code_injection
http://en.wikipedia.org/wiki/Attack_(computing)
http://en.wikipedia.org/wiki/Security_vulnerability
http://en.wikipedia.org/wiki/String_literal
http://en.wikipedia.org/wiki/String_literal
http://en.wikipedia.org/wiki/String_literal
http://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/Strongly-typed_programming_language
http://en.wikipedia.org/wiki/Vector_(malware)
http://en.wikipedia.org/wiki/Imperva

 ONLY FOR ARMIET STUDENTS……….

A Classification of SQL injection attacking vector until 2010

 ONLY FOR ARMIET STUDENTS……….

 Incorrectly filtered escape characters

This form of SQL injection occurs when user input is not filtered for escape

characters and is then passed into a SQL statement. This results in the potential

manipulation of the statements performed on the database by the end-user of the

application.

The following line of code illustrates this vulnerability:

statement = "SELECT * FROM users WHERE name ='" + userName + "';"

This SQL code is designed to pull up the records of the specified username from its table

of users. However, if the "userName" variable is crafted in a specific way by a malicious

user, the SQL statement may do more than the code author intended. For example, setting

the "userName" variable as:

' or '1'='1

or using comments to even block the rest of the query (there are three types of SQL

comments[13]). All three lines have a space at the end:

' or '1'='1' --

' or '1'='1' ({

' or '1'='1' /*

renders one of the following SQL statements by the parent language:

SELECT * FROM users WHERE name = '' OR '1'='1';

SELECT * FROM users WHERE name = '' OR '1'='1' -- ';

http://en.wikipedia.org/wiki/Escape_character
http://en.wikipedia.org/wiki/Escape_character
http://en.wikipedia.org/wiki/Escape_character
http://en.wikipedia.org/wiki/SQL_injection#cite_note-13

 ONLY FOR ARMIET STUDENTS……….

If this code were to be used in an authentication procedure then this example could be

used to force the selection of a valid username because the evaluation of '1'='1' is always

true.

The following value of "userName" in the statement below would cause the deletion of

the "users" table as well as the selection of all data from the "userinfo" table (in essence

revealing the information of every user), using an API that allows multiple statements:

a';DROP TABLE users; SELECT * FROM userinfo WHERE 't' = 't

This input renders the final SQL statement as follows and specified:

SELECT * FROM users WHERE name = 'a';DROP TABLE users; SELECT * FROM

userinfo WHERE 't' = 't';

While most SQL server implementations allow multiple statements to be executed with

one call in this way, some SQL APIs such as PHP's mysql_query() function do not allow

this for security reasons. This prevents attackers from injecting entirely separate queries,

but doesn't stop them from modifying queries.

CONCLUSION:- Hence we have studied and successfully Implement SQL Injection

Attack.

http://en.wikipedia.org/wiki/API
http://en.wikipedia.org/wiki/PHP

